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Motivation (1)

Let X , Y be Archimedean vector lattices and consider the space
Lr(X ,Y ) of regular linear operators with the cone
L+(X ,Y ) := {T ∈ L(X ,Y );T [X+] ⊆ Y+}.
▶ If Y is Dedekind complete:

Lr(X ,Y ) is a Dedekind complete vector lattice
▶ In general:

Lr(X ,Y ) is an Archimedean directed ordered vector space
Problem: Determine the set of operators that have a modulus.
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Motivation (2)

Let Z be an Archimedean directed ordered vector space.
Determine M := {z ∈ Z ; |z| := sup{z,−z} exists}.

Proposition (K., Stennder, van Gaans, 2021)
For z ∈ Z, the following are equivalent.

(i) |z| exists.
(ii) There are z1, z2 ∈ Z+ with z1 ⊥ z2 and z = z1 − z2.

▶ We are going to define disjointness in ordered vector spaces.
▶ We use a vector lattice cover of Z to determine all disjoint

elements (and, hence, all elements with modulus).

Anke Kalauch (TU Dresden) Vlc for operator spaces COSA 2025 3 / 23



Ordered vector spaces

Let X be a (real) vector space. A partial order ≤ on X is called a vector
space order if
(a) x , y , z ∈ X and x ≤ y imply x + z ≤ y + z,
(b) x ∈ X , 0 ≤ x and λ ∈ [0,∞) imply 0 ≤ λx .

The set X+ := {x ∈ X ;0 ≤ x} is then a cone in X , i.e., x , y ∈ X+,
λ ∈ [0,∞) imply λx + y ∈ X+, and X+ ∩ (−X+) = {0}.

X is then called an ordered vector space (ovs).

For X ,Y being ovs and T : X → Y a linear operator, T is called
bipositive if T is positive (i.e., T [X+] ⊆ Y+) and, for x ∈ X , Tx ∈ Y+

implies x ∈ X+.
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Cones in R3 – from vector lattice to anti-lattice
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Pre-Riesz spaces

An ordered vector spaces X is called a pre-Riesz space if there exist a
vector lattice Y and a bipositive linear map i : X → Y such that i[X ] is
order dense in Y , i.e., for every y ∈ Y one has

y = inf{i(x); x ∈ X , i(x) ≥ y}.

(Y , i) is called a vector lattice cover.
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Every vector lattice is a pre-Riesz space.

An ovs X is called Archimedean if, for every x , y ∈ X such that nx ≤ y
for all n ∈ N, one has that x ≤ 0.
X is directed if and only if X+ is generating, i.e., X = X+ − X+.

Proposition
▶ Every Archimedean directed ovs is a pre-Riesz space.
▶ Every pre-Riesz space is directed.

If X ,Y are ovs such that X is directed and Y is Archimedean, then
L+(X ,Y ) := {T : X → Y ; T linear, T [X+] ⊆ Y+} is a cone and
Lr(X ,Y ) := L+(X ,Y )− L+(X ,Y ) is an Archimedean directed ovs,
hence pre-Riesz.
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Explicite construction of vector lattice covers of spaces of operators:

▶ Lr(ℓ∞0 ,Y ), where ℓ∞0 is the space of all finally constant sequences
and Y is an Archimedean vector lattice [Wickstead, 2024]

▶ generalized version in [Starkey, Xanthos, 2025]
Hereby, the vector lattice cover is a space of operators, where the
range space is Dedekind complete.

▶ The operator norm closure C(X ,Y ) of the finite rank operators
within L(X ,Y ), where X and Y are appropriate ordered normed
spaces such that L(X ,Y )+ contains an order unit
[van Gaans, Glück, K., 2025]

Vector lattice cover is C(Ω) for Ω being a compact Hausdorff space.
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Order unit spaces

Let X be an Archimedean ovs with order unit u, i.e., for every x ∈ X
there is a λ ∈ (0,∞) such that −λu ≤ x ≤ λu. By defining

∥·∥u : X → [0,∞), x 7→ ∥x∥u := inf{λ ∈ (0,∞); −λu ≤ x ≤ λu},

X is a normed space. X ′ denotes the (norm) dual space of X and
X ′
+ := {φ ∈ X ′; φ[X+] ⊆ [0,∞)} the dual cone. The set

Σ = {φ ∈ X ′
+; φ(u) = 1}

is a weakly-∗ compact base of X ′
+.

Note: Order unit spaces are directed.
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Kadison’s representation

Define
Ψ: X → C(Σ), x 7→ (ψ 7→ ψ(x)).

▶ Ψ is linear, bipositive, and maps u to the constant-1 function.
▶ For every x ∈ X , the function Ψ(x) is affine on Σ.

To obtain an order dense embedding, one has to consider

Φ: X → C
(

ext(Σ)
)
, x 7→ (ψ 7→ ψ(x)).

[K.,Lemmens, van Gaans, 2013](
C
(
ext(Σ)

)
,Φ

)
is a vector lattice cover of X .
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Our assumptions:

Let X ,Y be (non-zero) ordered normed spaces with closed cones.
This implies that X and Y are Archimedean.

Consider the space L(X ,Y ) of linear norm bounded operators.

Let X+ be total, i.e., X+ − X+ = X .
X is total if and only if L(X ,Y )+ is a cone.

Every U in the interior of L(X ,Y )+ is an order unit.
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Theorem (van Gaans, Glück, K., 2025)
The following are equivalent:

1. L(X ,Y )+ has non-empty interior in L(X ,Y ).
2. The cone Y+ has non-empty interior in Y and there exists an

equivalent norm on X which is additive on X+.

In this case, the interior of L(X ,Y )+ contains a rank-1 operator:

For every interior point y0 of Y+ and every interior point x ′
0 of X ′

+, the
operator y0 ⊗ x ′

0 is an interior point of L(X ,Y )+.
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Disjointness

For x , y ∈ X+, define x ⊥ y whenever x ∧ y = 0.

If X is a vector lattice: For x , y ∈ X , x ⊥ y whenever |x | ∧ |y | = 0.
Equivalent: |x + y | = |x − y |.

If X is an ovs [van Gaans, K. 2006]:

x ⊥ y :⇐⇒ {x + y ,−(x + y)}u = {x − y ,−(x − y)}u

For M ⊆ X , Md denotes the disjoint complement of M.
M is called a band, if M = Mdd.
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Proposition (K., Stennder, van Gaans, 2021)
Let Z be a pre-Riesz space. The set of elements in Z that possess a
modulus in Z equals ⋃

B⊆Z band

(
B+ − Bd

+

)
.
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Disjointness under embedding

Proposition (van Gaans, K., 2006)
Let X be a pre-Riesz space and (Y , i) a vector lattice cover of X . Then
one has, for every x , y ∈ X,

x ⊥ y ⇐⇒ i(x) ⊥ i(y).

Order denseness is needed for ‘=⇒’.

If Y = C(Ω), disjointness is pointwise, and it is sufficient to consider a
dense subset of Ω.
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Modification of Kadison’s embedding:

Theorem (van Gaans, Glück, K., 2025)
Let Z ̸= {0} be an ordered normed space whose cone Z+ has an
interior point z0 and let S ⊆ Z ′ be a subset with the following
properties:

1. One has ⟨s, z0⟩ = 1 for all s ∈ S.
2. Every element of S is an extremal vector of Z ′

+.
3. The set S determines positivity (i.e., for every z ∈ Z, one has

z ≥ 0 whenever s(z) ≥ 0 for all s ∈ S).
Endow the weak-∗ closure S with the weak-∗ topology and consider

Φ: X → C
(
S
)
, x 7→ (ψ 7→ ψ(x)).

Then
(
C
(
S
)
,Φ

)
is a vector lattice cover of Z .
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z1 ⊥ z2 in Z ⇐⇒ for every s ∈ S, one has s(z1) = 0 or s(z2) = 0.

Question/Problem: Extremals in the cone of operators ??

C(X ,Y ) - closure of the space of finite rank operators in L(X ,Y ).

For x ∈ X and y ′ ∈ Y ′, define y ′ ⊗ x ∈ C(X ,Y )′ by

(y ′ ⊗ x)(T ) := y ′(Tx)

for all T ∈ C(X ,Y ).
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Theorem (vG, Gl, K., 2025)
Let X and Y be ordered normed spaces with the following properties:

1. The cone X+ is total and normal, and every extremal vector x of
X+ is also extremal in the bidual cone X ′′.

2. The cone Y+ is total.
For non-zero vectors x ∈ X+ and y ′ ∈ Y ′

+, the functional
y ′ ⊗ x ∈ C(X ,Y )′+ is extremal in C(X ,Y )′+ if and only if x is extremal in
X+ and y ′ is extremal in Y ′

+.

Anke Kalauch (TU Dresden) Vlc for operator spaces COSA 2025 18 / 23



Theorem (vG, Gl, K, 2025)
Let X ,Y be (non-zero) ordered normed spaces such that:

1. The cone X+ is total, there exists an equivalent norm on X that is
additive on X+, and every extremal vector of X+ is also extremal in
the bidual cone X ′′

+. Moreover, the convex hull of the extremal
vectors in X+ is dense in X+.

2. The cone Y+ has non-empty interior.
For an interior point y0 of Y+ and an interior point x ′

0 of X ′
+, define

S :=
{

y ′ ⊗ x : x is extremal in X+, y ′ is extremal in Y ′
+,

and ⟨y ′, y0⟩⟨x ′
0, x⟩ = 1

}
⊆ C(X ,Y )′.

Then
(
C
(
S
)
,Φ

)
is a vector lattice cover of C(X ,Y ).

Anke Kalauch (TU Dresden) Vlc for operator spaces COSA 2025 19 / 23



Examples:
▶ If X ,Y are finite-dimensional ordered vector spaces with closed

and generating cones, then the assumptions of the theorem are
satisfied.
For polyhedral cones: [Schneider, Vidyasagar, 1970]

▶ The sequence space X := ℓ1 with its usual norm and the
componentwise order satisfies assumption 1 of the theorem.

▶ Let H be a Hilbert space. The space X of self-adjoint trace class
operators on H, endowed with the Loewner cone of operators
A ∈ X that satisfy (v |Av) ≥ 0 for all v ∈ H, satisfies assumption 1
of the theorem.
The extremal vectors of X+ are precisely the strictly positive
multiples of the rank-1 projections on H.
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▶ Let X be a real Banach space, let x0 ∈ X and x ′
0 ∈ X ′ be such that

⟨x ′
0, x0⟩ = 1 and endow X with the centered cone

X+ := {x + rx0 : x ∈ ker x ′
0, r ≥ ∥x∥}.

Then X+ is a closed cone with non-empty interior and there exists
an equivalent norm on X that is additive on X+ [Glueck, 2016].
If the space X is reflexive, then X satisfies assumption 1 of the
theorem.
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Corollary
In the setting of the above theorem, two operators T1,T2 ∈ C(X ,Y ) are
disjoint if and only if, for all extremal vectors x ∈ X+ and y ′ ∈ Y ′

+, one
has ⟨y ′,T1x⟩ = 0 or ⟨y ′,T2x⟩ = 0.

▶ Bands in C(X ,Y ) are characterized by bisaturated subsets of S.
▶ The set of elements in C(X ,Y ) that possess a modulus equals⋃

B⊆C(X ,Y ) band

(
B+ − Bd

+

)
.
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