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Kaplansky-Hilbert modules

Extremally disconnected: closure of open sets is open

Stonean: extremally disconnected compact Hausdorff space

AW*-algebra: C*-algebra with some extra assumptions (slight
generalization of von Neumann algebra)

abelian AW*-algebra: C (K ) with K Stonean

Kaplansky, 1953: initiated study of Kaplansky-Hilbert modules
(KH-modules): Hilbert spaces H with C replaced by an abelian
AW*-algebra A.

H is an A-module

⟨·, ·⟩ : H × H → A, positive definite, A-sesquilinear
Some completeness assumption

Kaplansky used KH-modules to characterize type I AW*-algebras.
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Hilbert C*-modules

1970’s: theory of Hilbert C*-modules; A is generalized to an
arbitrary C*-algebra.

Now an enormous area of research

Very important in noncommutative geometry

The theory of Hilbert C*-modules is not as nice as the theory of
KH-modules:

Only a weak form of Cauchy-Schwarz

No Riesz Representation Theorem (H∗ ∼= H)

V ⊆ H submodule: V⊥⊥ ̸= V

The theory of Hilbert C*-modules is quite different from the theory
of KH-modules
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2021

Some scattered results about KH-modules appeared in the
literature, until:

Edeko, Haasse, Kreidler (2021, arxiv): A Decomposition
Theorem for Unitary Group Representations on
Kaplansky-Hilbert Modules and the Furstenberg-Zimmer
Structure Theorem

Quick summary of the paper:

Elementary proof of Spectral Theorem for Hilbert-Schmidt
operators on KH-modules

Theorem on unitary group representations on KH-modules

Combine these to obtain KH-module theoretic proof of the
famous Furstenberg-Zimmer Structure Theorem

This removes separability restrictions

Future KH-module theory applications to ergodic theory
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Probability theory in vector lattices

Invented in 2000’s in South Africa

E (replacing L1) is a Dedekind complete vector lattice, e
(replacing 1) weak unit

T : E → E conditional expectation: linear, positive, order
continuous, Te = e, R(T ) Dedekind complete

Extend T : R(T ) becomes universally complete

R(T ) admits a very nice f -algebra multiplication

E becomes an R(T )-module

Define ∥·∥p : E → R(T ) by ∥f ∥p := T (|f |p)
1
p

Define Lp(T ) as those f for which ∥f ∥p exists

Kalauch, Kuo, Watson 2023: Riesz Representation Theorem
for L2(T )
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Connection between those two theories?

In KH-modules, scalars: A ∼= C (K ), abelian AW*-algebra

In probability, scalars: R(T ), universally complete VL

Both are (real/complex) Dedekind complete unital f-algebras!

Our goal: unify both theories by setting up a general theory of
functional analysis, replacing R (or C) by a real (or complex)
Dedekind complete unital f-algebra.

Notation? A (for algebra) or L (for lattice)? Best is L.
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Q: How does L compare with A ∼= C (K ) and R(T )?

K Stonean

C∞(K ) = {f ∈ C (K , [−∞,∞]) : f −1(R) is dense}
R(T ) is universally complete, so isomorphic to C∞(K ) for
some Stonean K

A Dedekind complete unital f-algebra L is an order ideal and
subalgebra of C∞(K ) containing C (K ), so

C (K ) ⊆ L ⊆ C∞(K )

So the KH-module theory and the theory of probability in vector
lattices correspond to the extreme cases L = C (K ) and
L = C∞(K )
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L-normed spaces

From now on L is a fixed (real or complex) Dedekind complete
unital f-algebra. Elements of L will be denoted by λ and µ.

Definition

An L-normed space (X , ∥·∥) is an L-module X equipped with a
map ∥·∥ : X → L+ satisfying

∥λx∥ = |λ| ∥x∥
∥x + y∥ ≤ ∥x∥+ ∥y∥
∥x∥ = 0 ⇔ x = 0.

An L-normed space is an example of a lattice normed space,
which goes back to Kantorovich (1936), who investigated mostly
the non-module case.

Example

(L, | · |) is an L-normed space
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Convergence

We define xα → x to mean that ∥xα − x∥ → 0 in L, so we need a
notion of convergence in L. Order convergence is used in both
motivating examples.

Notation: A ↘ 0 means that A ⊆ L with inf A = 0.

Definition

Let X be an L-normed space, (xα) a net in X , and x ∈ X . Then
we define xα → x to mean that

∃E ↘ 0 ∀ε ∈ E ∃α0 ∀α ≥ α0 ∥xα − x∥ ≤ ε.

Similar to convergence in R, except E depends on the net (xα).
Note that notion of convergence in X is not topological! It turns
X into a convergence space.
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Completeness

Definition

A net (xα) in an L-normed space X is Cauchy if (xα − xβ) → 0. X
is complete or an L-Banach space if every Cauchy net converges.

The Dedekind completeness of L is equivalent to the completeness
of (L, | · |).

Thus the Dedekind completeness assumption on L is necessary.
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ℓ∞(S ,L)

Let S be a nonempty set.

Example

ℓ∞(S ,L) := {f : S → L : ∃M ∈ L+ ∀s ∈ S |f (s)| ≤ M}

Defining (λf )(s) := λf (s) turns ℓ∞(S ,L) into an L-module, and
for f ∈ ℓ∞(S ,L), define (using Dedekind completeness of L)

∥f ∥∞ := sup
s∈S

|f (s)|.

Theorem

ℓ∞(S ,L) is an L-Banach space.

Proof is very similar to the classical case.
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cL0

Denote ℓL∞ := ℓ∞(N,L).

Definition

We define cL0 to be the elements f ∈ ℓL∞ such that

∃E ↘ 0 ∀ε ∈ E ∃N ∈ N ∀n ≥ N |f (n)| ≤ ε

Theorem

cL0 is a closed subspace of ℓL∞ (and hence an L-Banach space)

Closed means that the limit of every converging net is in the set.
In the classical case this is a simple 2ε-proof.
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cL0 is closed

Proof.

Let cL0 ∋ fα → f ∈ ℓL∞. To show: f ∈ cL0 . We have:

∀α ∃Eα ↘ 0 ∀ε ∈ Eα ∃N ∈ N ∀n ≥ N |fα(n)| ≤ ε;

∃H ↘ 0 ∀η ∈ H ∃αη ∀α ≥ αη ∥f − fα∥∞ ≤ η.

Define E := {η + ε : η ∈ H, ε ∈ Eαη} =
⋃
η∈H

(
η + Eαη

)
,

then inf E = inf
η∈H

[
inf

(
η + Eαη

)]
= inf

η∈H
η = 0.

Let η + ε ∈ E (η ∈ H, ε ∈ Eαη) be arbitrary. Let N ∈ N be such
that |fαη(n)| ≤ ε for all n ≥ N. Then for n ≥ N:

|f (n)| ≤ |f (n)− fαη(n)|+ |fαη(n)| ≤ η + ε.

Marten Wortel joint work with Eder Kikianty, Miek Messerschmidt, Luan Naude, Mark Roelands, Christopher Schwanke, Walt van Amstel, and Jan Harm van der WaltL-functional analysis



cL0 is closed

Proof.

Let cL0 ∋ fα → f ∈ ℓL∞. To show: f ∈ cL0 . We have:

∀α ∃Eα ↘ 0 ∀ε ∈ Eα ∃N ∈ N ∀n ≥ N |fα(n)| ≤ ε;

∃H ↘ 0 ∀η ∈ H ∃αη ∀α ≥ αη ∥f − fα∥∞ ≤ η.

Define E := {η + ε : η ∈ H, ε ∈ Eαη} =
⋃
η∈H

(
η + Eαη

)
,

then inf E = inf
η∈H

[
inf

(
η + Eαη

)]
= inf

η∈H
η = 0.

Let η + ε ∈ E (η ∈ H, ε ∈ Eαη) be arbitrary. Let N ∈ N be such
that |fαη(n)| ≤ ε for all n ≥ N. Then for n ≥ N:

|f (n)| ≤ |f (n)− fαη(n)|+ |fαη(n)| ≤ η + ε.

Marten Wortel joint work with Eder Kikianty, Miek Messerschmidt, Luan Naude, Mark Roelands, Christopher Schwanke, Walt van Amstel, and Jan Harm van der WaltL-functional analysis



cL0 is closed

Proof.

Let cL0 ∋ fα → f ∈ ℓL∞. To show: f ∈ cL0 . We have:

∀α ∃Eα ↘ 0 ∀ε ∈ Eα ∃N ∈ N ∀n ≥ N |fα(n)| ≤ ε;

∃H ↘ 0 ∀η ∈ H ∃αη ∀α ≥ αη ∥f − fα∥∞ ≤ η.

Define E := {η + ε : η ∈ H, ε ∈ Eαη} =
⋃
η∈H

(
η + Eαη

)
,

then inf E = inf
η∈H

[
inf

(
η + Eαη

)]
= inf

η∈H
η = 0.

Let η + ε ∈ E (η ∈ H, ε ∈ Eαη) be arbitrary. Let N ∈ N be such
that |fαη(n)| ≤ ε for all n ≥ N. Then for n ≥ N:

|f (n)| ≤ |f (n)− fαη(n)|+ |fαη(n)| ≤ η + ε.

Marten Wortel joint work with Eder Kikianty, Miek Messerschmidt, Luan Naude, Mark Roelands, Christopher Schwanke, Walt van Amstel, and Jan Harm van der WaltL-functional analysis



Operators

X , Y L-normed spaces, T ∈ HomL(X ,Y ).

Definition

T is bounded if ∃M ∈ L+ ∀x ∈ X ∥Tx∥Y ≤ M ∥x∥X .

∥T∥ := inf{M ∈ L+ : ∀x ∈ X ∥Tx∥ ≤ M ∥x∥}

B(X ,Y ) := {T ∈ HomL(X ,Y ) : T is bounded}.

Theorem

B(X ,Y ) is an L-normed space satisfying ∥TS∥ ≤ ∥T∥ ∥S∥ which
is complete whenever Y is complete.

Proof is very similar to the classical case.
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L-Banach algebras

Definition

A is an L-Banach algebra if it is an L-Banach space equipped
with a ‘bilinear’ map A× A → A satisfying ∥ab∥ ≤ ∥a∥ ∥b∥.

The sentence ‘Let A be an A-Banach algebra’ would be awkward,
hence L is a better notation than A.

Example

If X is an L-Banach space, then B(X ) is an L-Banach algebra.
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Hahn-Banach

φ : X → L is sublinear if φ(λx) = λφ(x) and
φ(x + y) ≤ φ(x) + φ(y) for λ ∈ L+ and x , y ∈ X .

Theorem

Let X be a real L-module, Y ⊆ X submodule, f ∈ HomL(Y ,L),
φ : X → L sublinear with f (y) ≤ φ(y) for all y ∈ Y . Then there
exists an F ∈ homL(X ,L) extending f with F (x) ≤ φ(x) for all
x ∈ X .

Classical proof relies on the fact that if λ ̸= 0, then
(λ is invertible) and (λ > 0 or λ < 0). Neither hold in L so the
proof is a lot more sophisticated.
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X ∗ := B(X ,L)
1 is the unit in L

Corollary

Let X be an L-normed space and x ∈ X , then there exists an
x∗ ∈ X ∗ with x∗(x) = ∥x∥ and ∥x∗∥ ≤ 1.

Corollary

J : X → X ∗∗ is isometric.

Corollary

The completion of X can be defined as J(X ) in X ∗∗.

This circumvents set-theoretic issues with having to consider
equivalence classes of Cauchy nets.
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L-Hilbert spaces

Let H be an L-module.

Definition

An inner product is a map ⟨·, ·⟩ : H × H → L satisfying

⟨x , x⟩ ∈ L+, and ⟨x , x⟩ = 0 ⇔ x = 0

⟨λx + µy , z⟩ = λ ⟨x , z⟩+ µ ⟨y , z⟩
⟨x , y⟩ = ⟨y , x⟩

Note that ∥x∥ :=
√

⟨x , x⟩ turns H into an L-normed space; if it is
complete, H is called an L-Hilbert space.

Theorem (Cauchy-Schwarz, Pythagoras)

| ⟨x , y⟩ | ≤ ∥x∥ ∥y∥ ⟨x , y⟩ = 0 ⇒ ∥x + y∥2 = ∥x∥2 + ∥y∥2.
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The next results requires more work.

Theorem (Parallelogram law)

Let X be an L-normed space. Then ∥·∥ is derived from an inner
product if and only if for all x , y ∈ X ,

∥x + y∥2 + ∥x − y∥2 = 2 ∥x∥2 + 2 ∥y∥2 .

C is L-convex if λx + (1− λ)y ∈ C for any 0 ≤ λ ≤ 1 and
x , y ∈ C .

Theorem

Let H be an L-Hilbert space and K be a closed, L-convex
nonempty subset of H. Then, for any x ∈ H, there exists a unique
point k0 in K such that

∥x − k0∥ = inf
k∈K

∥x − k∥ .
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By adapting Kaplansky’s proof from 1953, we also obtain

Theorem (Riesz Representation Theorem)

Let H be an L-Hilbert space and f ∈ H∗. Then there exists a
unique y ∈ H with f (x) = ⟨x , y⟩ for all x ∈ H.

Corollary

Every T ∈ B(H) has an adjoint.

Definition

A is an L-C*-algebra if it is a L-Banach *-algebra with
∥a∗∥ = ∥a∥ and ∥a∗a∥ = ∥a∥2.

Example

If H is an L-Hilbert space, then B(H) is an L-C*-algebra.
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Conclusion

L-functional analysis is a nice theory where most results hold just
as in the classical case, sometimes needing more sophisticated
arguments.

BUT

At the moment it is ‘just’ a unifying theory. It would be nice to
find an application.

Future work:

Generalize the rest of functional analysis to L-functional
analysis;

Find a nice application.
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Thank you for your attention!
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