A Riesz-Frechet theorem in Riesz spaces

Bruce A. Watson¹ with A. Kalauch and W. Kuo

University of the Witwatersrand

Abstract

Let *F* is a Dedekind complete Riesz space with weak order unit and conditional expectation operator *T*. In addition we assume that *T* is strictly positive and that *F* is *T*-universally complete. We define $E=L^2(T):=\{f\in F\,|\,f^2\in F\},$ where multiplication is as defined in the f -algebra $F_u,$ the universal completion of F. The T-strong dual of $L^2(T)$ denoted by \hat{E} consists of the maps $f: L^2(T) \to R(T) := T(F)$ such that f is $R(T)$ -homogeneous, order continuous and there exists $k \in R(T)_+$ so that $|f(g)| \leq k\|g\|_{T,2}$ for all $g \in L^2(T).$ Here $\|g\|_{T,2} = \sqrt{T(g^2)}$ and the space \hat{E} $R(T)$ valued norm $\|f\| := \inf\{k \in R(T)_+ \mid |f(g)| \le k\|g\|_{T,2}$ for all $g \in E\}.$ We give a Riesz-Frechet theorem which provides an isometry between *E* and *E*ˆ.

1 / 24

¹ Funded in part by the National Research Foundation of South Africa an[d Co](#page-0-0)[E-M](#page-1-0)[ASS.](#page-0-0)

- Let *E* be a Dedekind complete Riesz space with weak order unit, say *e*, and *G* be a Dedekind complete Riesz subspace of *E* which also contains *e*, so $\{e\} \subset G \subset E$.
- Denote the set of all components of e in E by $\mathcal{K}(e)$, and by $\mathcal{K}_G(e) = G \cap \mathcal{K}(e)$ the set of all components of *e* in *E* which are in *G*.
- **It should be noted here that** $\mathcal{K}(e)$ **and** $\mathcal{K}_G(e)$ **are Boolean** algebras with $\mathcal{K}_G(e)$ a subalgebra of $\mathcal{K}(e)$.
- \bullet It should be noted that *E* is an E_e -module.
- As *e* is a weak order unit for *G*, we have that *G* and *E* are *Ge*-modules.

イロト イ部 トイモト イモト 一番

Hahn-Jordan decomposition II

- Let B be a Boolean subalgebra of $\mathcal{K}(e)$ which contains $\mathcal{K}_G(e)$ and is order closed in E, i.e., if (p_α) is a net in B with $p_{\alpha} \downarrow p$ in *E*, then $p \in \mathcal{B}$.
- Take $\psi : \mathcal{B} \to G$ to be a map such that:
	- (i) If $p \in B$ and $q \in \mathcal{K}_G(e)$ then $\psi(pq) = q\psi(p)$.
	- (ii) If $p, q \in \mathcal{B}$ with $pq = 0$ then $\psi(p \vee q) = \psi(p+q) = \psi(p) + \psi(q)$ (additivity).
	- (iii) If (p_α) is a net in B with $p_\alpha \downarrow p$ in E, then $\psi(p_\alpha) \rightarrow \psi(p)$ (order continuity of ψ).

(iv) There is $g \in E^+$ so that $|\psi(p)| \leq g$ for all $p \in \mathcal{B}$.

- We say that $q \in \mathcal{B}$ is strongly positive (resp. strongly negative) with respect to ψ if $\psi(p) \geq 0$ (resp. ≤ 0) for all $p \in \mathcal{B}$ with $p \leq q$.
- By (i) with $q = 0$ we have $\psi(0) = 0$.
- The Hahn-Jordan decomposition presented gives the existence of $q \in \mathcal{B}$ so that q is strongly positive with respect [t](#page-3-0)o ψ ψ ψ and $e - q$ is strongly negative wit[h r](#page-1-0)[es](#page-3-0)p[ec](#page-2-0)t [to](#page-0-0) ψ [.](#page-0-0)

Hahn-Jordan decomposition III

For *q* ∈ B we set

$$
C(q) := \{ \psi(p) \mid p \in \mathcal{B}, p \leq q \}.
$$

- Since $0 \in \mathcal{B}, 0 \leq q$ and $\psi(0) = 0$ we have that $0 \in C(q)$. Further, as ψ is order bounded, so is $C(q)$.
- **•** As *G* is Dedekind complete, we can define

$$
\alpha(q) := \sup C(q) \in G^+.
$$

For *q* ∈ B let

$$
\mathcal{M}(q) := \{ p \in \mathcal{B} \mid 2\psi(p) \geq p\alpha(q), p \leq q \}.
$$

 \bullet If $r, s \in \mathcal{M}(q)$ with $rs = 0$, then $r + s \in \mathcal{M}(q)$.

 \bullet For each *q* ∈ B, 0 ∈ M(*q*), M(*q*) has a maximal element, $\hat{q} \in \mathcal{B}$.

 \bullet For *q* ∈ *B* and each *p* ∈ *M*(*q*),

 $2p\psi(p) \geq p\alpha(q)$,

so $(\alpha(q) - 2\psi(p))^+$ and *p* are disjoint in *E*. **•** For $q \in \mathcal{B}$, if \hat{q} is a maximal element of $\mathcal{M}(q)$, then

$$
0 \leq \alpha(\hat{q}) \leq \alpha(q) \leq 2\psi(\hat{q}) \leq 2\alpha(\hat{q}). \tag{1}
$$

If $p \in \mathcal{B}$ with $\psi(p) < 0$ then there exists $v \in \mathcal{B}$ with $v \leq p$ and v **strongly negative with respect to** ψ and $\psi(\nu) \leq \psi(p)$.

- Let $p \in \mathcal{B}$ with $\psi(p) < 0$.
- Set $\alpha_1 := \alpha(p) \geq 0$ and $p_1 := \hat{p} \in \mathcal{M}(p)$.
- Inductively we define

$$
\alpha_{n+1} := \alpha \left(p - \bigvee_{i=1}^{n} p_i \right)
$$

$$
p_{n+1} := \left(p - \bigvee_{i=1}^{n} p_i\right) \in \mathcal{M}\left(p - \bigvee_{i=1}^{n} p_i\right).
$$

• Now $\alpha_n \leq 2\psi(p_n)$ for all $n \in \mathbb{N}$ and $p_i p_j = 0$ for all $i \neq j$.

Hahn-Jordan decomposition VI

 \bullet

 $\overline{p} := \sum_{i=1}^{\infty} p_i = \bigvee_{i=1}^{\infty} p_i \in \mathcal{B} \leq p$ *i*=1 *i*=1

• The additivity and order continuity of ψ give that

$$
0 \leq \sum_{i=1}^{\infty} \alpha_i \leq \sum_{i=1}^{\infty} 2\psi(p_i) = 2\psi(\bar{p}). \tag{2}
$$

- Let $v := p \bar{p}$ then $v \leq p$ and $\psi(v) + \psi(\bar{p}) = \psi(p)$, so, by [\(2\)](#page-6-0), $\psi(v) \leq \psi(p)$.
- If $q \le v$ then $q \le p \sum_{i=1}^{n} p_i$ making $\psi(q) \le \alpha_{n+1}$, for all $n\in\mathbb{N}.$ This together with [\(2\)](#page-6-0) gives that

$$
n\psi(q) \leq \sum_{i=2}^{n+1} \alpha_i \leq 2\psi(\bar{p}),
$$

for all $n \in \mathbb{N}$. So $\psi(q) \leq 0$. Hence *v* is strongly negative with K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 O respect to ψ and ν is as required. 7 / 24

Applying Zorn's Lemma to

$$
\mathcal{H} := \{ p \in \mathcal{B} \mid p \text{ strongly negative w.r.t. } \psi \},
$$

we have:

Theorem (Abstract Hahn-Jordan Decomposition)

There exists $q \in \mathcal{B}$ *which is strongly positive with respect to* ψ *and which has* $e - q$ *strongly negative with respect to* ψ *.*

Riesz space conditional expectation operators

- **•** Let *E* be a Dedekind complete Riesz space with weak order unit.
- We recall that *e* is a weak order unit of *E* if *e* ≥ 0 and

$$
\sup_{n\in\mathbb{N}}((ne)\wedge f)=f
$$

for each $f \in E$ with $f \geq 0$.

- A positive order continuous projection *T* on *E* with range a Dedekind complete Riesz subspace of *E*, is called a conditional expectation² if $T(e)$ is a weak order unit of E for each weak order unit *e* of *E*.
- *T* is said to be strictly positive if $Tf = 0$ with $f \in E_+$ implies $f = 0$.

 2 W.-C. Kuo, C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete time stoch[asti](#page-7-0)c [pro](#page-9-0)[ce](#page-7-0)[sse](#page-8-0)[s](#page-9-0) [on R](#page-0-0)[ies](#page-23-0)[z sp](#page-0-0)[aces](#page-23-0)[,](#page-0-0)
a. Mathem., 15 (2004), 435-451. *Indag. Mathem.*, **15** (2004), 435-451.

T-universal completeness

- Let *E* be a Dedekind complete Riesz space *E* with weak order unit and strictly positive conditional expectation operator *T*. We say that *E* is *T*-universally complete if for each upwards directed net (f_{α}) in E_{+} with (Tf_{α}) order bounded in E_u we have that (f_α) is order convergent to some f in E . In this case we denote E by $L^1(T)$, see ³.
- We define

$$
L^2(T) := \{ f \in L^1(T) \mid f^2 \in L^1(T) \}
$$

where the multiplication is as defined in the *f*-algebra *Eu*, see 4 and 5 .

³W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Conditional expectations on Riesz spaces, *J. Math. Anal. Appl.*, **303** (2005), 509-521.

⁴ LABUSCHAGNE, WATSON, Discrete stochastic integration in Riesz spaces, *Positivity*, **14** (2010), 859-875.

^{5&}lt;br>⁵ Y. Azouzi, M. Trabelsi, *LP* spaces with respect to condi[tion](#page-8-0)al expectation [on R](#page-10-0)[ie](#page-8-0)[sz](#page-9-0) [sp](#page-10-0)[ace](#page-0-0)[s,](#page-23-0) *[J.](#page-23-0) [Mat](#page-0-0)[h. A](#page-23-0)[nal.](#page-0-0) Appl.* **447** (2017), 798-816. イロト イ何 トイヨ トイヨ トーヨ

Let *E* be a *T*-universally complete Riesz space, where *T* is a conditional expectation operator on *E* which has a weak order unit *e* with $Te = e$.

- *R*(*T*) is universally complete and hence an *f*-algebra.⁶
- $L^p(T), p = 1, 2$, are $R(T)$ -modules and E_e -modules.
- *T* is an averaging operator in the sense that if $f \in R(T)$ and $g \in E = L^1(T)$ then $fg \in E$ with $T(fg) = fT(g)$.
- Multiplication whenever used in the talk is that of the *f*-algebra *E^u* with multiplicative identity *e*.
- $E_e \subset L^p(T)$.

⁶ KUO, ROGANS, WATSON, Mixing inequalities, *JMAA*, **456** (2017), 992-1[004.](#page-9-0)

R(*T*) valued norms

Let *E* be a Dedekind complete Riesz space with weak order unit and *F* an *f*-algebra which is also a Riesz subspace of *E*. If *E* is an *F*-module and $\|\cdot\|$: $E \to F_+$ with the following three properties, then ∥ · ∥ will be called an *F*-valued norm on *E*.

•
$$
||f|| = 0
$$
 if and only if $f = 0$,

- \bullet $||gf|| = |g| ||f||$ for all $f \in E$ and $g \in F$,
- \bullet $||f + h|| \leq ||f|| + ||h||$ for all *f*, *h* ∈ *E*.

An $R(T)$ -valued norm on $L^2(T)$ for is defined by

$$
||f||_{T,2} = (T|f|^2)^{1/2} \in R(T)_+
$$

for $f \in L^2(T)$. From Grobler⁷ or Azouzi and Trabelsi⁸ we have the following Riesz space Hölder's inequality. If $f \in L^2(T)$ and $g \in L^2(T),$ then $gf \in L^1(T)$ and

∥*gf* ∥*T*,¹ ≤ ∥*g*∥*T*,2∥*f* ∥*T*,2.

Appl. **447** (2017), 798-816. イロト イ押 トイヨ トイヨ トーヨ

⁷ J. J. GROBLER, Jensen's and martingale inequalities in Riesz spaces, *Indag. Math., N.S.*, **25** (2014), 275-295. 8
⁸ Y. Azouzi, M. Trabelsi, *LP* spaces with respect to condi[tion](#page-10-0)al expectation [on R](#page-12-0)[ie](#page-10-0)[sz](#page-11-0) [sp](#page-12-0)[ace](#page-0-0)[s,](#page-23-0) *[J.](#page-23-0) [Mat](#page-0-0)[h. A](#page-23-0)[nal.](#page-0-0)*

Let $E = L^2(T)$.

- We say that a map $f : E \to R(T)$ is a T-linear functional on *E* if it is additive, *R*(*T*)-homogeneous and order continuous.
- Since *R*(*T*) is a Dedekind complete Riesz space and *E* is a Riesz space, a linear map from *E* to *R*(*T*) is order bounded if and only if it is order continuous.
- We denote the space of *T*-linear functionals on *E* by *E* [∗] and call it the *T*-dual of *E*.
- $\mathsf{W\acute{e}}$ note that $E^*\subset \mathcal{L}_b(E,R(T)),$ since $R(T)$ -homogeneity implies real linearity.
- Further as $R(T)$ is Dedekind complete, so is $\mathcal{L}_b(E,R(T)).^9$

⁹ C.D. ALIPRANTIS, O. BURKINSHAW, *Positive operators*, Academic pres[s, 19](#page-11-0)8[5.](#page-13-0)

Lemma (Riesz-Kantorovich)

The space E ∗ *is a Riesz space with respect to the partial ordering* $f \leq g$ *if and only if* $f(x) \leq g(x)$ *for all* $x \in E_+$ *. This partial ordering is equivalent to defining the lattice operations by*

$$
(f \vee g)(x) := \sup\{f(y) + g(z) \, | \, y, z \in E_+, y + z = x\}
$$

and

$$
(f \wedge g)(x) := \inf \{ f(y) + g(z) \, | \, y, z \in E_+, y + z = x \}
$$

for all $x \in E_+$ *and extending these operators to E. Here* $f_\alpha \downarrow o$ *in* E^* *if and only if* $\mathfrak{f}_\alpha(x) \downarrow 0$ *in E for each* $x \in E_+$ *.* E^* *is Dedekind complete and an R*(*T*)*-module.*

The strong dual

If $f \in E^*$ and there is $k \in R(T)^+$ such that

|f(*g*)| ≤ *k*∥*g*∥*T*,2, for all *g* ∈ *E*,

we say that f is *T*-strongly bounded.

We denote the space of *T*-strongly bounded *T*-linear functionals on *E* by

 $\hat{E}:=\{\mathfrak{f}\in E^* \ | \ \mathfrak{f}$ *T*-strongly bounded}

and refer to it as the *T*-strong dual of *E*. It is a Dedekind complete Riesz subspace of *E* ∗ .

• Further,

∥f∥ := inf{*k* ∈ *R*(*T*) ⁺ | |f(*g*)| ≤ *k*∥*g*∥*T*,² for all *g* ∈ *E*}

defines an $R(T)$ -valued norm on \hat{E} with

$$
|f(g)| \le ||f|| \, ||g||_{T,2} \tag{3}
$$

for all $g \in L^2(T)$.

KID KAR KEX KEX E 1090

Riesz-Frechet Theorem I

- Let B denote the lattice of components of e in $L^2(T)$.
- For brevity of notation, if $f \in E^+$ then P_f will denote the band projection onto the band generated by *f* in *E* and $p_f := P_f e$ where e is the chosen weak order unit of $E.$
- Here *p^f* is a component of *e* in *E*. Further, due to *E* being an *Ee*-module, and the definition of the multiplicative structure, $P_f g = p_f g$ where on the left is the action of the band projection P_f on g and on the right is the product of p_f and *g*, for $g \in E$.
- For $y \in E := L^2(T)$ let $T_y(x) := T(xy)$ for all $x \in E$, then $T_v \in \hat{E}$ and

$$
||T_{y}|| = ||y||_{T,2}.
$$
 (4)

The map $\Psi : y \mapsto T_y$ is $R(T)$ -homogeneous, additive and injective.

Riesz-Frechet Theorem II

- We take $G = R(T)$, $\psi(p) = \mathfrak{g}(p)$ and B to be the set of all components of *e* in *E*.
- **The Abstract Hahn-Jordan Theorem is applicable and** gives that there is $q \in \mathcal{B}$ which is strongly positive with respect to ψ and has $e - q$ strongly negative with respect to ψ . Take $q_{\mathfrak{g}}^+ := q$.
- Hence for each $\mathfrak{g}\in \hat{E},$ there is a component $q_\mathfrak{g}^+$ of e in E so that $\mathfrak{g}(pq^+_{g})\geq 0$ and $\mathfrak{g}((e-q^+_{g})p)\leq 0$ for all components p of *e* in *E*.

Theorem (Riesz-Frechet representation theorem)

 $\mathsf{For\ each\ } \mathfrak{f} \in \hat{E} \text{ there exists } y(\mathfrak{f}) \in E := L^2(T) \text{ such that } \mathfrak{f} = T_{y(\mathfrak{f})}.$

Riesz-Frechet Theorem - Proof sketch I

- Let $f \in \hat{E}$.
- We build a diadic approximation (s_n) to $y(f)^+$.
- For all $p \in \mathcal{B}$ with $p \leq q^+_{\mathfrak{f}-2^{-n}kT}$ we have

$$
\left(\mathfrak{f} - \frac{k}{2^n}T\right)(p) \ge 0
$$

so

$$
\mathfrak{f}(p) \ge 2^{-n}kT(p).
$$

For all $p \in \mathcal{B}$ with $p \leq e - q_{\mathfrak{f}-2^{-n}(k+1)T}^+$

$$
\left(\mathfrak{f} - \frac{k+1}{2^n}T\right)(p) \le 0
$$

so

$$
\mathfrak{f}(p) \le 2^{-n}(k+1)T(p).
$$

(ロトス個) (電) (電) (電) (電)

Riesz-Frechet Theorem - Proof sketch II

Let

$$
h_k^1 = q_{\mathfrak{f} - 2^{-1}k}^+(e - q_{\mathfrak{f} - 2^{-1}(k+1)T}^+)
$$

 $h_{k}^{1}h_{j}^{1}=0$ for all $k\neq j$ so

$$
\sum_{k=0}^{\infty} h_k^1 =: q^+
$$

is a component of *e*.

- Here $\mathfrak{f}(p)\geq 0$ for all $p\in \mathcal{B}$ with $p\leq q^+$ and $\mathfrak{f}(p)\leq 0$ for all $p \in \mathcal{B}$ with $p \leq e - q^+$.
- For *n* ∈ N define

$$
h_{2k}^{n+1} = h_k^n q_{\mathfrak{f}-2^{-n-1}(2k+1)T}^+ h_{2k+1}^{n+1} = h_k^n (e - q_{\mathfrak{f}-2^{-n-1}(2k+1)T}^+).
$$

 $\mathsf{Here} \ h^n_k h^n_j = 0 \text{ for all } k \neq j \text{ and } n$

$$
\sum_{k=0}^{\infty} h_k^n = q^+.
$$

Riesz-Frechet Theorem - Proof sketch I

• The summation

$$
s_n := \sum_{k=0}^{\infty} \frac{k}{2^n} h_k^n
$$

gives a diadic approximation to $y(f)^+$.

• For all $p \in \mathcal{B}$,

$$
\frac{k}{2^n}T(ph_k^n) \leq \mathfrak{f}(ph_k^n) \leq \frac{k+1}{2^n}Tph_k^n. \tag{5}
$$

- $Ts_n \leq \mathfrak{f}(q^+)$ for all $n \in \mathbb{N}$.
- (s_n) is increasing and (Ts_n) is bounded in E_u by $\mathfrak{f}(q^+)$, so (s_n) converges in $L^1(T)$ to *s*.
- It can be shown that *s* is also in $L^2(T)$.

Riesz-Frechet Theorem - Proof sketch I

• Working from [\(5\)](#page-20-0), we have

$$
T(ps_n) \leq \mathfrak{f}(pq^+) \leq T(ps_n) + \frac{1}{2^n}T(p), \tag{6}
$$

Taking the order limit as $n \to \infty$ in [\(6\)](#page-21-0) gives

$$
T(ps) = \mathfrak{f}(pq^+). \tag{7}
$$

Applying Freudenthal's theorem along with the order continuity and linearity of *T* and f to [\(7\)](#page-21-1) we have that

$$
T(gs) = \mathfrak{f}(gq^+),\tag{8}
$$

for all $g \in E^+$. This extends by linearity to all $g \in E$. We note here that s is in the band generated by q^+ .

Applying the above to $-f$ gives $y(f)^-$.

Theorem

The map Ψ *defined by* $\Psi(f)(g) := T_f(g) = T(fg)$ *for* $f, g \in L^2(T)$ *is a bijection between* $E = L^2(T)$ *and, its* $R(T)$ -homogeneous *strong dual, E*ˆ*. This map is additive, R*(*T*)*-homogeneous and R*(*T*) \cdot valued norm preserving in the sense that $||T_f|| = ||f||_{T,2}$ for $all f \in L^2(T)$.

Thank you!