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Abstract

Let F is a Dedekind complete Riesz space with weak order unit and conditional expectation
operator 7. In addition we assume that T is strictly positive and that F is T-universally complete. We
define E = 12(T) := {f € F|f* € F}, where multiplication is as defined in the f-algebra F,, the
universal completion of F. The T-strong dual of L?(T) denoted by E consists of the maps

§: L*(T) — R(T) := T(F) such that j is R(T)-homogeneous, order continuous and there exists
k € R(T) 4 sothat [f(g)| < kllgllr,2 forallg € L*(T). Here llgllz,2 = 1/T(g?) and the space £
has R(T) valued norm |[[f|| := inf{k € R(T)4 | [f(g)| < kllgll7,2 forallg € E}. We give a
Riesz-Frechet theorem which provides an isometry between E and E.

1 Funded in part by the National Research Foundation of South Africa and CoE-MASS.
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Hahn-Jordan decomposition |

@ Let E be a Dedekind complete Riesz space with weak
order unit, say e, and G be a Dedekind complete Riesz
subspace of E which also contains e, so {¢} C G C E.

@ Denote the set of all components of e in E by K(e), and by
Kg(e) = GN K(e) the set of all components of e in E which
arein G.

@ It should be noted here that K(e) and K(e) are Boolean
algebras with K¢(e) a subalgebra of K(e).

@ |t should be noted that E is an E,-module.

@ As e is a weak order unit for G, we have that G and E are
G.-modules.
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Hahn-Jordan decomposition |l

@ Let B be a Boolean subalgebra of 1C(e) which contains
Kc(e) and is order closed in E, i.e., if (p,) is a net in B with
Pa 4 pin E, thenp € B.

@ Take ¥ : B — G to be a map such that:

(i) Ifp e Band g € Kg(e) then ¥(pg) = g (p).
(i) If p,q € B with pg = 0 then
Y(pVq) =1¥(p+q) = Y(p) +¥(q) (additivity).
(iii) If (po) is @anetin B with p, | pin E, then ¥(p,) — ¥(p)
(order continuity of ).
(iv) Thereis g € E* sothat |¢(p)| < g forall p € B.

@ We say that ¢ € B is strongly positive (resp. strongly
negative) with respect to v if ¢(p) > 0 (resp. < 0) for all
p € Bwith p <gq.

@ By (i) with ¢ = 0 we have (0) = 0.

@ The Hahn-Jordan decomposition presented gives the
existence of g € B so that ¢ is strongly positive with respect
to ¢» and e — ¢ is strongly negative with respect to .
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Hahn-Jordan decomposition

@ For g € B we set

C(q) = {¢{)|p € B,p < q}.

@ Since 0 € B, 0 < g and ¥(0) = 0 we have that 0 € C(q).
Further, as v is order bounded, so is C(gq).

@ As G is Dedekind complete, we can define
a(g) :=sup C(q) € G*.
@ Forqg e Blet
M(q) :=={p € B| 2¢(p) = palq),p < q}-

o If r,s € M(q) with rs = 0, then r + s € M(q).

@ Foreach g € B,0 € M(q), M(q) has a maximal element,
q € B.
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Hahn-Jordan decomposition IV

@ For g € Band each p € M(q),

2pY(p) > pa(q),

so (a(q) — 24(p))™ and p are disjoint in E.
@ For g € B, if g is a maximal element of M(g), then

0 < a(g) < alg) <2¢9(q) < 2a(9). (1)
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Hahn-Jordan decomposition V

If p € B with ¢)(p) < 0 then there exists v ¢ Bwithv <pandv
strongly negative with respect to ) and )(v) < ¥ (p).

@ Letp € Bwith ¢(p) < 0.
@ Setaj :=a(p) >0and p; :=p € M(p).
@ Inductively we define

Opt1 ‘= & (p - \/pz)
i=1
Pus1 = (p— \/m) eM (p— \/pi> :
i=1

i=1
@ Now o, < 24¢(p,) foralln € Nand p;p; = 0 for all i # j.
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Hahn-Jordan decomposition VI

°
p=> pi=\/peB<p
i=1 i=1
@ The additivity and order continuity of 1 give that

0< Y i <> 2¢(pi) = 2¢(p)- (2
i=1 i=1

@ Letv:=p—pthenv <pandy(v)+¢(p) =1 (p), so, by (2),
P(v) < Y(p).

o Ifg<vtheng <p— > p making ¢(q) < an1, for all

i=1
n € N. This together with (2) gives that
n+1
mp(g) < i < 24(p),
i=2
foralln € N. So ¢/(¢) < 0. Hence v is strongly negative with

respect to ¢ and v is as required. T



Hahn-Jordan decomposition VII

Applying Zorn’s Lemma to

H = {p € B | p strongly negative w.r.t. ¢},

we have:

Theorem (Abstract Hahn-Jordan Decomposition)

There exists q € B which is strongly positive with respect to
and which has e — q strongly negative with respect to 1.

8/24



Riesz space conditional expectation operators

@ Let E be a Dedekind complete Riesz space with weak
order unit.

@ We recall that e is a weak order unit of E if e > 0 and
sup((ne) Af) =f
neN

for each f € E with f > 0.

@ A positive order continuous projection T on E with range a
Dedekind complete Riesz subspace of E, is called a
conditional expectation? if T(e) is a weak order unit of E for
each weak order unit e of E.

@ T is said to be strictly positive if Tf = 0 with f € E, implies
f=0.

2W.-C. Kuo, C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete time stochastic processes on Riesz spaces,
Indag. Mathem., 15 (2004), 435-451.
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T-universal completeness

@ Let E be a Dedekind complete Riesz space E with weak
order unit and strictly positive conditional expectation
operator 7. We say that E is T-universally complete if for
each upwards directed net (f,) in E with (7f,) order
bounded in E, we have that (f,) is order convergent to
some f in E. In this case we denote E by L'(T), see 3.

@ We define
LX(T) :={f € L'(T) | f* € L'(T)}

where the multiplication is as defined in the f-algebra E,,
see* and S.

3W.-C. Kuo, C.C.A. LABUSCHAGNE, B.A. WATSON, Conditional expectations on Riesz spaces, J. Math. Anal.
Appl., 303 (2005), 509-521.
LABUSCHAGNE, WATSON, Discrete stochastic integration in Riesz spaces, Positivity, 14 (2010), 859-875.
Y. Azouzi, M. TRABELSI, L’ spaces with respect to conditional expectation on Riesz spaces, J. Math. Anal.

Appl. 447 (2017), 798-816.
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R(T)-Modules

Let E be a T-universally complete Riesz space, where T is a
conditional expectation operator on E which has a weak order
unit e with 7e = e.
@ R(T) is universally complete and hence an f-algebra.®
@ [”(T),p =1,2, are R(T)-modules and E.,-modules.
@ T is an averaging operator in the sense that if f € R(T) and
g € E=LY(T) then fg € E with T(fg) = fT(g).
@ Multiplication whenever used in the talk is that of the
f-algebra E, with multiplicative identity e.
@ E, C I/(T).

GKUO, ROGANS, WATSON, Mixing inequalities, JMAA, 456 (2017), 992-1004.
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R(T) valued norms

Let E be a Dedekind complete Riesz space with weak order
unit and F an f-algebra which is also a Riesz subspace of E. If
Eis an F-module and || - || : E — F4 with the following three
properties, then || - || will be called an F-valued norm on E.

@ |f|| =0ifand only if f = 0,

@ |gfll = |g|llIf]| forallf € Eand g € F,

@ ||f + Al < |If|| + ||A|| forall f,h € E.
An R(T)-valued norm on L*(T) for is defined by

fllre = (TIF*)"? € R(T)+

for f € L>(T). From Grobler” or Azouzi and Trabelsi® we have
the following Riesz space Holder’s inequality. If f € L?(T) and
g € L*(T), then gf € L'(T) and

lefllr < llgllz2llfllr2-

7J. J. GROBLER, Jensen’s and martingale inequalities in Riesz spaces, Indag. Math., N.S., 25 (2014), 275-295.

8Y. Azouzi, M. TRABELSI, L spaces with respect to conditional expectation on Riesz spaces, J. Math. Anal.
Appl. 447 (2017), 798-816.
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E = L*(T) and its duals

Let E = L*(T).
@ We say thatamap §: E — R(T) is a T-linear functional on
E if it is additive, R(T)-homogeneous and order continuous.

@ Since R(T) is a Dedekind complete Riesz space and E is a
Riesz space, a linear map from E to R(T) is order bounded
if and only if it is order continuous.

@ We denote the space of T-linear functionals on E by E* and
call it the T-dual of E.

@ We note that E* € L,(E,R(T)), since R(T)-homogeneity
implies real linearity.

@ Further as R(T) is Dedekind complete, so is £,(E,R(T)).°

9C.DA ALIPRANTIS, O. BURKINSHAW, Positive operators, Academic press, 1985.
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Riesz-Kantorovich Lemma

Lemma (Riesz-Kantorovich)

The space E* is a Riesz space with respect to the partial
ordering f < g if and only iff(x) < g(x) for all x € E. This partial
ordering is equivalent to defining the lattice operations by

(fV g)(x) :=sup{f(y) + 8(z) | v,z € E+,y +z=x}
and
(f A g)(x) :=inf{f(y) + 9(z) | y,z € E4+,y + z = x}

for all x € E. and extending these operators to E. Here §, | o in
E* ifand only iffo(x) | 0 in E for each x € E. E* is Dedekind
complete and an R(T)-module.
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The strong dual

e If f € E* and there is k € R(T)™ such that
7@l < kligliz, forallg €E,

we say that f is T-strongly bounded.
@ We denote the space of T-strongly bounded T-linear
functionals on E by

E := {f € E* |} T-strongly bounded}

and refer to it as the T-strong dual of E. It is a Dedekind
complete Riesz subspace of E*.
@ Further,

]l := inf{k € R(T)* |[§(g)| < kllgllr> forallg e E}
defines an R(T)-valued norm on E with

5@ < lIfll llgllr,2 (©)
for all g € L*(T).
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Riesz-Frechet Theorem |

@ Let B denote the lattice of components of e in L*(T).

@ For brevity of notation, if f € E* then P, will denote the
band projection onto the band generated by f in E and
pr := Pre where e is the chosen weak order unit of E.

@ Here py is a component of e in E. Further, due to E being
an E.-module, and the definition of the multiplicative
structure, Prg = prg where on the left is the action of the
band projection P; on g and on the right is the product of p,
and g, forg € E.

@ Fory e E :=L*(T) let T,(x) := T(xy) for all x € E, then
T, € E and

ITy[| = [lyll7.2- (4)

The map ¥ : y — T, is R(T)-homogeneous, additive and
injective.
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Riesz-Frechet Theorem Il

@ We take G = R(T), ¥(p) = g(p) and B to be the set of all
components of e in E.

@ The Abstract Hahn-Jordan Theorem is applicable and
gives that there is ¢ € B which is strongly positive with
respect to ¢ and has e — ¢ strongly negative with respect to
1. Take qa' =q.

@ Hence for each g € E, there is a component qg of ein E so

that g(pg; ) > 0 and g((e — ¢4 )p) < 0 for all components p
ofeinE.
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Riesz-Frechet Theorem

Theorem (Riesz-Frechet representation theorem)

For each f € E there exists y(j) € E := L*(T) such that § = Typ)-
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Riesz-Frechet Theorem - Proof sketch |

o LetfeE.
@ We build a diadic approximation (s,) to y(f)*.

@ Forallp € Bwithp < q?_z,nkT we have

(1-57) 0120

S0
fp) = 27"k (p).

® Forallpe Bwithp <e—gq', ..y

(1-557) 0 <0

SO

flp) <27"(k+ DT (p).
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Riesz-Frechet Theorem - Proof sketch Il

o Let
1+ +
hy = qf—Z*lkT(e - qf—Z*l(k—H)T)
then ih} = 0 for all k # j so

o0
Z h}( = q+
k=0

is a component of e.

@ Here §f(p) > 0 for all p € B with p < ¢+ and f(p) < 0 for all
p € Bwithp <e—qg™.
@ For n € N define

+1 _gn +
hoi *hzqf—zfnfl(zkw)r

n+1
Moy = hi(e — q;r—zfnfl(zkﬂ)r)'
@ Here ijh? = 0 for all k # j and

o0
Z W =qt.
k=0
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Riesz-Frechet Theorem - Proof sketch |

@ The summation
(o)

k
Sp = ﬁhz
k=0
gives a diadic approximation to y(f)*.

@ Forallp e B,

k n n k+1_
on L (Phy) < F(ph) < ——Tphy. (5)
@ Ts, < f(q")forallneN.

@ (s,) is increasing and (Ts,) is bounded in E, by f(¢*), so
(s,) converges in L'(T) to s.

@ It can be shown that s is also in L*(T).
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Riesz-Frechet Theorem - Proof sketch |

@ Working from (5), we have

1
T(psa) < f(pg") < T(psa) + 5, T(p), (6)
Taking the order limit as n — oo in (6) gives

T(ps) = f(pg™). (7)

@ Applying Freudenthal’s theorem along with the order
continuity and linearity of 7 and f to (7) we have that

T(gs) = f(gq™), (8)

for all g € E™. This extends by linearity to all g € E. We
note here that s is in the band generated by ¢*.

@ Applying the above to —f gives y(f)~.
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Riesz-Frechet Theorem - Final version

The map ¥ defined by ¥ (f)(g) := T¢(g) = T(fg) forf,g € L*(T)
is a bijection between E = L*(T) and, its R(T)-homogeneous
strong dual, E. This map is additive, R(T)-homogeneous and
R(T)-valued norm preserving in the sense that ||T¢| = ||f||r» for
allf € L*(T).

4
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End

Thank you!
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