A Riesz-Frechet theorem in Riesz spaces

Bruce A. Watson¹ with A. Kalauch and W. Kuo

University of the Witwatersrand

Abstract

Let *F* is a Dedekind complete Riesz space with weak order unit and conditional expectation operator *T*. In addition we assume that *T* is strictly positive and that *F* is *T*-universally complete. We define $E = L^2(T) := \{f \in F \mid f^2 \in F\}$, where multiplication is as defined in the *f*-algebra *F_u*, the universal completion of *F*. The *T*-strong dual of $L^2(T)$ denoted by \hat{E} consists of the maps $f: L^2(T) \to R(T) := T(F)$ such that *f* is *R*(*T*)-homogeneous, order continuous and there exists $k \in R(T)_+$ so that $|f(g)| \le k ||g||_{T,2}$ for all $g \in L^2(T)$. Here $||g||_{T,2}$ for all $g \in E$. We give a Riesz-Frechet theorem which provides an isometry between *E* and \hat{E} .

¹Funded in part by the National Research Foundation of South Africa and CoE-MASS. > () + ()

- Let *E* be a Dedekind complete Riesz space with weak order unit, say *e*, and *G* be a Dedekind complete Riesz subspace of *E* which also contains *e*, so {*e*} ⊂ *G* ⊂ *E*.
- Denote the set of all components of *e* in *E* by *K*(*e*), and by *K*_G(*e*) = *G* ∩ *K*(*e*) the set of all components of *e* in *E* which are in *G*.
- It should be noted here that *K*(*e*) and *K*_G(*e*) are Boolean algebras with *K*_G(*e*) a subalgebra of *K*(*e*).
- It should be noted that E is an E_e -module.
- As *e* is a weak order unit for *G*, we have that *G* and *E* are *G_e*-modules.

Hahn-Jordan decomposition II

- Let \mathcal{B} be a Boolean subalgebra of $\mathcal{K}(e)$ which contains $\mathcal{K}_G(e)$ and is order closed in *E*, i.e., if (p_α) is a net in \mathcal{B} with $p_\alpha \downarrow p$ in *E*, then $p \in \mathcal{B}$.
- Take $\psi : \mathcal{B} \to G$ to be a map such that:
 - (i) If $p \in \mathcal{B}$ and $q \in \mathcal{K}_G(e)$ then $\psi(pq) = q\psi(p)$.
 - (ii) If $p, q \in \mathcal{B}$ with pq = 0 then $\psi(p \lor q) = \psi(p+q) = \psi(p) + \psi(q)$ (additivity).
 - (iii) If (p_{α}) is a net in \mathcal{B} with $p_{\alpha} \downarrow p$ in E, then $\psi(p_{\alpha}) \rightarrow \psi(p)$ (order continuity of ψ).

(iv) There is $g \in E^+$ so that $|\psi(p)| \leq g$ for all $p \in \mathcal{B}$.

- We say that q ∈ B is strongly positive (resp. strongly negative) with respect to ψ if ψ(p) ≥ 0 (resp. ≤ 0) for all p ∈ B with p ≤ q.
- By (i) with q = 0 we have $\psi(0) = 0$.
- The Hahn-Jordan decomposition presented gives the existence of *q* ∈ B so that *q* is strongly positive with respect to ψ and *e* − *q* is strongly negative with respect to ψ.

Hahn-Jordan decomposition III

• For $q \in \mathcal{B}$ we set

$$C(q) := \{ \psi(p) \mid p \in \mathcal{B}, p \le q \}.$$

- Since $0 \in \mathcal{B}$, $0 \le q$ and $\psi(0) = 0$ we have that $0 \in C(q)$. Further, as ψ is order bounded, so is C(q).
- As G is Dedekind complete, we can define

$$\alpha(q) := \sup C(q) \in G^+.$$

• For $q \in \mathcal{B}$ let

$$\mathcal{M}(q) := \{ p \in \mathcal{B} \mid 2\psi(p) \ge p\alpha(q), p \le q \}.$$

• If $r, s \in \mathcal{M}(q)$ with rs = 0, then $r + s \in \mathcal{M}(q)$.

• For each $q \in \mathcal{B}$, $0 \in \mathcal{M}(q)$, $\mathcal{M}(q)$ has a maximal element, $\hat{q} \in \mathcal{B}$.

• For $q \in \mathcal{B}$ and each $p \in \mathcal{M}(q)$,

 $2p\psi(p)\geq p\alpha(q),$

so $(\alpha(q) - 2\psi(p))^+$ and p are disjoint in E.

• For $q \in \mathcal{B}$, if \hat{q} is a maximal element of $\mathcal{M}(q)$, then

$$0 \le \alpha(\hat{q}) \le \alpha(q) \le 2\psi(\hat{q}) \le 2\alpha(\hat{q}). \tag{1}$$

If $p \in \mathcal{B}$ with $\psi(p) < 0$ then there exists $v \in \mathcal{B}$ with $v \le p$ and v strongly negative with respect to ψ and $\psi(v) \le \psi(p)$.

- Let $p \in \mathcal{B}$ with $\psi(p) < 0$.
- Set $\alpha_1 := \alpha(p) \ge 0$ and $p_1 := \hat{p} \in \mathcal{M}(p)$.
- Inductively we define

$$\alpha_{n+1} := \alpha \left(p - \bigvee_{i=1}^n p_i \right)$$

$$p_{n+1} := \left(p - \bigvee_{i=1}^{n} p_i \right) \in \mathcal{M} \left(p - \bigvee_{i=1}^{n} p_i \right).$$

• Now $\alpha_n \leq 2\psi(p_n)$ for all $n \in \mathbb{N}$ and $p_i p_j = 0$ for all $i \neq j$.

Hahn-Jordan decomposition VI

۲

 $\bar{p} := \sum_{i=1}^{\infty} p_i = \bigvee_{i=1}^{\infty} p_i \in \mathcal{B} \le p$

• The additivity and order continuity of ψ give that

$$0 \le \sum_{i=1}^{\infty} \alpha_i \le \sum_{i=1}^{\infty} 2\psi(p_i) = 2\psi(\bar{p}).$$
(2)

- Let $v := p \overline{p}$ then $v \le p$ and $\psi(v) + \psi(\overline{p}) = \psi(p)$, so, by (2), $\psi(v) \le \psi(p)$.
- If $q \le v$ then $q \le p \sum_{i=1}^{n} p_i$ making $\psi(q) \le \alpha_{n+1}$, for all $n \in \mathbb{N}$. This together with (2) gives that

 $n\psi(q) \le \sum_{i=2}^{n+1} \alpha_i \le 2\psi(\bar{p}),$

for all $n \in \mathbb{N}$. So $\psi(q) \leq 0$. Hence v is strongly negative with respect to ψ and v is as required.

Applying Zorn's Lemma to

$$\mathcal{H} := \{ p \in \mathcal{B} \mid p \text{ strongly negative w.r.t. } \psi \},\$$

we have:

Theorem (Abstract Hahn-Jordan Decomposition)

There exists $q \in \mathcal{B}$ which is strongly positive with respect to ψ and which has e - q strongly negative with respect to ψ .

Riesz space conditional expectation operators

- Let *E* be a Dedekind complete Riesz space with weak order unit.
- We recall that *e* is a weak order unit of *E* if $e \ge 0$ and

$$\sup_{n\in\mathbb{N}}((ne)\wedge f)=f$$

for each $f \in E$ with $f \ge 0$.

- A positive order continuous projection *T* on *E* with range a Dedekind complete Riesz subspace of *E*, is called a conditional expectation² if *T*(*e*) is a weak order unit of *E* for each weak order unit *e* of *E*.
- *T* is said to be strictly positive if Tf = 0 with $f \in E_+$ implies f = 0.

²W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete time stochastic processes on Riesz spaces, Indag. Mathem., **15** (2004), 435-451.

T-universal completeness

- Let *E* be a Dedekind complete Riesz space *E* with weak order unit and strictly positive conditional expectation operator *T*. We say that *E* is *T*-universally complete if for each upwards directed net (f_{α}) in E_+ with (Tf_{α}) order bounded in E_u we have that (f_{α}) is order convergent to some *f* in *E*. In this case we denote *E* by $L^1(T)$, see ³.
- We define

$$L^{2}(T) := \{ f \in L^{1}(T) \mid f^{2} \in L^{1}(T) \}$$

where the multiplication is as defined in the *f*-algebra E_u , see⁴ and ⁵.

³W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Conditional expectations on Riesz spaces, *J. Math. Anal. Appl.*, **303** (2005), 509-521.

⁴LABUSCHAGNE, WATSON, Discrete stochastic integration in Riesz spaces, *Positivity*, **14** (2010), 859-875.

⁵Y. AZOUZI, M. TRABELSI, *L^p* spaces with respect to conditional expectation on Riesz spaces, *J. Math. Anal.* Appl. **447** (2017), 798-816.

Let *E* be a *T*-universally complete Riesz space, where *T* is a conditional expectation operator on *E* which has a weak order unit *e* with Te = e.

- R(T) is universally complete and hence an *f*-algebra.⁶
- $L^{p}(T), p = 1, 2$, are R(T)-modules and E_{e} -modules.
- *T* is an averaging operator in the sense that if $f \in R(T)$ and $g \in E = L^1(T)$ then $fg \in E$ with T(fg) = fT(g).
- Multiplication whenever used in the talk is that of the f-algebra E_u with multiplicative identity e.
- $E_e \subset L^p(T)$.

⁶Kuo, Rogans, Watson, Mixing inequalities, *JMAA*, **456** (2017), 992-1004 Δ + ()

R(T) valued norms

Let *E* be a Dedekind complete Riesz space with weak order unit and *F* an *f*-algebra which is also a Riesz subspace of *E*. If *E* is an *F*-module and $\|\cdot\|: E \to F_+$ with the following three properties, then $\|\cdot\|$ will be called an *F*-valued norm on *E*.

•
$$||f|| = 0$$
 if and only if $f = 0$,

- ||gf|| = |g| ||f|| for all $f \in E$ and $g \in F$,
- $||f + h|| \le ||f|| + ||h||$ for all $f, h \in E$.

An R(T)-valued norm on $L^2(T)$ for is defined by

$$||f||_{T,2} = (T|f|^2)^{1/2} \in R(T)_+$$

for $f \in L^2(T)$. From Grobler⁷ or Azouzi and Trabelsi⁸ we have the following Riesz space Hölder's inequality. If $f \in L^2(T)$ and $g \in L^2(T)$, then $gf \in L^1(T)$ and

 $||gf||_{T,1} \le ||g||_{T,2} ||f||_{T,2}.$

 ⁷ J. J. GROBLER, Jensen's and martingale inequalities in Riesz spaces, *Indag. Math., N.S.*, **25** (2014), 275-295.
 ⁸ Y. AZOUZI. M. TRABELSI, L^p spaces with respect to conditional expectation on Riesz spaces, *J. Math. Anal.*

Appl. 447 (2017), 798-816.

Let $E = L^{2}(T)$.

- We say that a map $f: E \to R(T)$ is a *T*-linear functional on *E* if it is additive, R(T)-homogeneous and order continuous.
- Since *R*(*T*) is a Dedekind complete Riesz space and *E* is a Riesz space, a linear map from *E* to *R*(*T*) is order bounded if and only if it is order continuous.
- We denote the space of *T*-linear functionals on *E* by *E*^{*} and call it the *T*-dual of *E*.
- We note that E^{*} ⊂ L_b(E, R(T)), since R(T)-homogeneity implies real linearity.
- Further as R(T) is Dedekind complete, so is $\mathcal{L}_b(E, R(T))$.⁹

⁹C.D. ALIPRANTIS, O. BURKINSHAW, Positive operators, Academic press, 1985.

Lemma (Riesz-Kantorovich)

The space E^* is a Riesz space with respect to the partial ordering $\mathfrak{f} \leq \mathfrak{g}$ if and only if $\mathfrak{f}(x) \leq \mathfrak{g}(x)$ for all $x \in E_+$. This partial ordering is equivalent to defining the lattice operations by

$$(\mathfrak{f} \vee \mathfrak{g})(x) := \sup\{\mathfrak{f}(y) + \mathfrak{g}(z) \mid y, z \in E_+, y + z = x\}$$

and

$$(\mathfrak{f} \wedge \mathfrak{g})(x) := \inf\{\mathfrak{f}(y) + \mathfrak{g}(z) \mid y, z \in E_+, y + z = x\}$$

for all $x \in E_+$ and extending these operators to E. Here $\mathfrak{f}_{\alpha} \downarrow \mathfrak{0}$ in E^* if and only if $\mathfrak{f}_{\alpha}(x) \downarrow 0$ in E for each $x \in E_+$. E^* is Dedekind complete and an R(T)-module.

The strong dual

• If $\mathfrak{f} \in E^*$ and there is $k \in R(T)^+$ such that

 $|\mathfrak{f}(g)| \le k \|g\|_{T,2}, \text{ for all } g \in E,$

we say that f is *T*-strongly bounded.

• We denote the space of *T*-strongly bounded *T*-linear functionals on *E* by

 $\hat{E} := \{ \mathfrak{f} \in E^* \, | \, \mathfrak{f} \text{ } T \text{-strongly bounded} \}$

and refer to it as the *T*-strong dual of *E*. It is a Dedekind complete Riesz subspace of E^* .

• Further,

 $\|f\| := \inf\{k \in R(T)^+ \mid |f(g)| \le k \|g\|_{T,2} \text{ for all } g \in E\}$

defines an R(T)-valued norm on \hat{E} with

$$|\mathfrak{f}(g)| \le \|\mathfrak{f}\| \, \|g\|_{T,2}$$
 (3)

(日)

for all $g \in L^2(T)$.

Riesz-Frechet Theorem I

- Let \mathcal{B} denote the lattice of components of e in $L^2(T)$.
- For brevity of notation, if *f* ∈ *E*⁺ then *P_f* will denote the band projection onto the band generated by *f* in *E* and *p_f* := *P_fe* where *e* is the chosen weak order unit of *E*.
- Here p_f is a component of e in E. Further, due to E being an E_e -module, and the definition of the multiplicative structure, $P_fg = p_fg$ where on the left is the action of the band projection P_f on g and on the right is the product of p_f and g, for $g \in E$.
- For $y \in E := L^2(T)$ let $T_y(x) := T(xy)$ for all $x \in E$, then $T_y \in \hat{E}$ and

$$||T_y|| = ||y||_{T,2}.$$
 (4)

The map $\Psi : y \mapsto T_y$ is R(T)-homogeneous, additive and injective.

Riesz-Frechet Theorem II

- We take G = R(T), ψ(p) = g(p) and B to be the set of all components of e in E.
- The Abstract Hahn-Jordan Theorem is applicable and gives that there is *q* ∈ B which is strongly positive with respect to ψ and has *e* − *q* strongly negative with respect to ψ. Take *q*⁺_g := *q*.
- Hence for each g ∈ Ê, there is a component q⁺_g of e in E so that g(pq⁺_g) ≥ 0 and g((e − q⁺_g)p) ≤ 0 for all components p of e in E.

Theorem (Riesz-Frechet representation theorem)

For each $\mathfrak{f} \in \hat{E}$ there exists $y(\mathfrak{f}) \in E := L^2(T)$ such that $\mathfrak{f} = T_{y(\mathfrak{f})}$.

Riesz-Frechet Theorem - Proof sketch I

- Let $\mathfrak{f} \in \hat{E}$.
- We build a diadic approximation (s_n) to $y(\mathfrak{f})^+$.
- For all $p \in \mathcal{B}$ with $p \leq q_{\mathfrak{f}-2^{-n}kT}^+$ we have

$$\left(\mathfrak{f}-\frac{k}{2^n}T\right)(p)\geq 0$$

so

$$\mathfrak{f}(p) \ge 2^{-n}kT(p).$$

• For all $p \in \mathcal{B}$ with $p \leq e - q_{\mathfrak{f}-2^{-n}(k+1)T}^+$

$$\left(\mathfrak{f}-\frac{k+1}{2^n}T\right)(p)\leq 0$$

so

$$\mathfrak{f}(p) \le 2^{-n}(k+1)T(p).$$

<ロ> <四> <四> <四> <三</td>

Riesz-Frechet Theorem - Proof sketch II

Let

$$h_k^1 = q_{\mathfrak{f}-2^{-1}kT}^+(e - q_{\mathfrak{f}-2^{-1}(k+1)T}^+)$$

then $h_k^1 h_j^1 = 0$ for all $k \neq j$ so

$$\sum_{k=0}^{\infty} h_k^1 =: q^+$$

is a component of *e*.

- Here $f(p) \ge 0$ for all $p \in \mathcal{B}$ with $p \le q^+$ and $f(p) \le 0$ for all $p \in \mathcal{B}$ with $p \le e q^+$.
- For $n \in \mathbb{N}$ define

$$h_{2k}^{n+1} = h_k^n q_{\mathfrak{f}-2^{-n-1}(2k+1)T}^+$$

$$h_{2k+1}^{n+1} = h_k^n (e - q_{\mathfrak{f}-2^{-n-1}(2k+1)T}^+).$$

• Here $h_k^n h_j^n = 0$ for all $k \neq j$ and

$$\sum_{k=0}^{\infty} h_k^n = q^+.$$

Riesz-Frechet Theorem - Proof sketch I

The summation

$$s_n := \sum_{k=0}^{\infty} \frac{k}{2^n} h_k^n$$

gives a diadic approximation to $y(f)^+$.

• For all $p \in \mathcal{B}$,

$$\frac{k}{2^n}T(ph_k^n) \le \mathfrak{f}(ph_k^n) \le \frac{k+1}{2^n}Tph_k^n.$$
(5)

- $Ts_n \leq \mathfrak{f}(q^+)$ for all $n \in \mathbb{N}$.
- (s_n) is increasing and (Ts_n) is bounded in E_u by f(q⁺), so
 (s_n) converges in L¹(T) to s.
- It can be shown that *s* is also in $L^2(T)$.

Riesz-Frechet Theorem - Proof sketch I

Working from (5), we have

$$T(ps_n) \le \mathfrak{f}(pq^+) \le T(ps_n) + \frac{1}{2^n}T(p), \tag{6}$$

Taking the order limit as $n \to \infty$ in (6) gives

$$T(ps) = \mathfrak{f}(pq^+). \tag{7}$$

 Applying Freudenthal's theorem along with the order continuity and linearity of T and f to (7) we have that

$$T(gs) = \mathfrak{f}(gq^+),\tag{8}$$

for all $g \in E^+$. This extends by linearity to all $g \in E$. We note here that *s* is in the band generated by q^+ .

• Applying the above to -f gives $y(f)^-$.

Theorem

The map Ψ defined by $\Psi(f)(g) := T_f(g) = T(fg)$ for $f, g \in L^2(T)$ is a bijection between $E = L^2(T)$ and, its R(T)-homogeneous strong dual, \hat{E} . This map is additive, R(T)-homogeneous and R(T)-valued norm preserving in the sense that $||T_f|| = ||f||_{T,2}$ for all $f \in L^2(T)$.

Thank you!