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Abstract
Let F is a Dedekind complete Riesz space with weak order unit and conditional expectation
operator T. In addition we assume that T is strictly positive and that F is T-universally complete. We
define E = L2(T) := {f ∈ F | f 2 ∈ F}, where multiplication is as defined in the f -algebra Fu, the
universal completion of F. The T-strong dual of L2(T) denoted by Ê consists of the maps
f : L2(T) → R(T) := T(F) such that f is R(T)-homogeneous, order continuous and there exists

k ∈ R(T)+ so that |f(g)| ≤ k∥g∥T,2 for all g ∈ L2(T). Here ∥g∥T,2 =
√

T(g2) and the space Ê
has R(T) valued norm ∥f∥ := inf{k ∈ R(T)+ | |f(g)| ≤ k∥g∥T,2 for all g ∈ E}. We give a
Riesz-Frechet theorem which provides an isometry between E and Ê.

1
Funded in part by the National Research Foundation of South Africa and CoE-MASS.

1 / 24



Hahn-Jordan decomposition I

Let E be a Dedekind complete Riesz space with weak
order unit, say e, and G be a Dedekind complete Riesz
subspace of E which also contains e, so {e} ⊂ G ⊂ E.
Denote the set of all components of e in E by K(e), and by
KG(e) = G ∩ K(e) the set of all components of e in E which
are in G.
It should be noted here that K(e) and KG(e) are Boolean
algebras with KG(e) a subalgebra of K(e).
It should be noted that E is an Ee-module.
As e is a weak order unit for G, we have that G and E are
Ge-modules.
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Hahn-Jordan decomposition II

Let B be a Boolean subalgebra of K(e) which contains
KG(e) and is order closed in E, i.e., if (pα) is a net in B with
pα ↓ p in E, then p ∈ B.
Take ψ : B → G to be a map such that:

(i) If p ∈ B and q ∈ KG(e) then ψ(pq) = qψ(p).
(ii) If p, q ∈ B with pq = 0 then

ψ(p ∨ q) = ψ(p + q) = ψ(p) + ψ(q) (additivity).
(iii) If (pα) is a net in B with pα ↓ p in E, then ψ(pα) → ψ(p)

(order continuity of ψ).
(iv) There is g ∈ E+ so that |ψ(p)| ≤ g for all p ∈ B.

We say that q ∈ B is strongly positive (resp. strongly
negative) with respect to ψ if ψ(p) ≥ 0 (resp. ≤ 0) for all
p ∈ B with p ≤ q.
By (i) with q = 0 we have ψ(0) = 0.
The Hahn-Jordan decomposition presented gives the
existence of q ∈ B so that q is strongly positive with respect
to ψ and e − q is strongly negative with respect to ψ.
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Hahn-Jordan decomposition III

For q ∈ B we set

C(q) := {ψ(p) | p ∈ B, p ≤ q}.

Since 0 ∈ B, 0 ≤ q and ψ(0) = 0 we have that 0 ∈ C(q).
Further, as ψ is order bounded, so is C(q).
As G is Dedekind complete, we can define

α(q) := supC(q) ∈ G+.

For q ∈ B let

M(q) := {p ∈ B | 2ψ(p) ≥ pα(q), p ≤ q}.

If r, s ∈ M(q) with rs = 0, then r + s ∈ M(q).
For each q ∈ B, 0 ∈ M(q), M(q) has a maximal element,
q̂ ∈ B.
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Hahn-Jordan decomposition IV

For q ∈ B and each p ∈ M(q),

2pψ(p) ≥ pα(q),

so (α(q)− 2ψ(p))+ and p are disjoint in E.
For q ∈ B, if q̂ is a maximal element of M(q), then

0 ≤ α(q̂) ≤ α(q) ≤ 2ψ(q̂) ≤ 2α(q̂). (1)
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Hahn-Jordan decomposition V

If p ∈ B with ψ(p) < 0 then there exists v ∈ B with v ≤ p and v
strongly negative with respect to ψ and ψ(v) ≤ ψ(p).

Let p ∈ B with ψ(p) < 0.
Set α1 := α(p) ≥ 0 and p1 := p̂ ∈ M(p).
Inductively we define

αn+1 := α

(
p −

n∨
i=1

pi

)

pn+1 :=

̂(
p −

n∨
i=1

pi

)
∈ M

(
p −

n∨
i=1

pi

)
.

Now αn ≤ 2ψ(pn) for all n ∈ N and pipj = 0 for all i ̸= j.
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Hahn-Jordan decomposition VI

p̄ :=

∞∑
i=1

pi =

∞∨
i=1

pi ∈ B ≤ p

The additivity and order continuity of ψ give that

0 ≤
∞∑

i=1

αi ≤
∞∑

i=1

2ψ(pi) = 2ψ(p̄). (2)

Let v := p− p̄ then v ≤ p and ψ(v) +ψ(p̄) = ψ(p), so, by (2),
ψ(v) ≤ ψ(p).

If q ≤ v then q ≤ p −
n∑

i=1

pi making ψ(q) ≤ αn+1, for all

n ∈ N. This together with (2) gives that

nψ(q) ≤
n+1∑
i=2

αi ≤ 2ψ(p̄),

for all n ∈ N. So ψ(q) ≤ 0. Hence v is strongly negative with
respect to ψ and v is as required.
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Hahn-Jordan decomposition VII

Applying Zorn’s Lemma to

H := {p ∈ B | p strongly negative w.r.t. ψ},

we have:

Theorem (Abstract Hahn-Jordan Decomposition)
There exists q ∈ B which is strongly positive with respect to ψ
and which has e − q strongly negative with respect to ψ.
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Riesz space conditional expectation operators

Let E be a Dedekind complete Riesz space with weak
order unit.
We recall that e is a weak order unit of E if e ≥ 0 and

sup
n∈N

((ne) ∧ f ) = f

for each f ∈ E with f ≥ 0.
A positive order continuous projection T on E with range a
Dedekind complete Riesz subspace of E, is called a
conditional expectation2 if T(e) is a weak order unit of E for
each weak order unit e of E.
T is said to be strictly positive if Tf = 0 with f ∈ E+ implies
f = 0.

2
W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Discrete time stochastic processes on Riesz spaces,

Indag. Mathem., 15 (2004), 435-451.
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T-universal completeness

Let E be a Dedekind complete Riesz space E with weak
order unit and strictly positive conditional expectation
operator T. We say that E is T-universally complete if for
each upwards directed net (fα) in E+ with (Tfα) order
bounded in Eu we have that (fα) is order convergent to
some f in E. In this case we denote E by L1(T), see 3.
We define

L2(T) := {f ∈ L1(T) | f 2 ∈ L1(T)}

where the multiplication is as defined in the f -algebra Eu,
see4 and 5.

3
W.-C. KUO, C.C.A. LABUSCHAGNE, B.A. WATSON, Conditional expectations on Riesz spaces, J. Math. Anal.

Appl., 303 (2005), 509-521.
4

LABUSCHAGNE, WATSON, Discrete stochastic integration in Riesz spaces, Positivity, 14 (2010), 859-875.
5

Y. AZOUZI, M. TRABELSI, Lp spaces with respect to conditional expectation on Riesz spaces, J. Math. Anal.
Appl. 447 (2017), 798-816.
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R(T)-Modules

Let E be a T-universally complete Riesz space, where T is a
conditional expectation operator on E which has a weak order
unit e with Te = e.

R(T) is universally complete and hence an f -algebra.6

Lp(T), p = 1, 2, are R(T)-modules and Ee-modules.
T is an averaging operator in the sense that if f ∈ R(T) and
g ∈ E = L1(T) then fg ∈ E with T(fg) = fT(g).
Multiplication whenever used in the talk is that of the
f -algebra Eu with multiplicative identity e.
Ee ⊂ Lp(T).

6
KUO, ROGANS, WATSON, Mixing inequalities, JMAA, 456 (2017), 992-1004.
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R(T) valued norms
Let E be a Dedekind complete Riesz space with weak order
unit and F an f -algebra which is also a Riesz subspace of E. If
E is an F-module and ∥ · ∥ : E → F+ with the following three
properties, then ∥ · ∥ will be called an F-valued norm on E.

∥f∥ = 0 if and only if f = 0,
∥gf∥ = |g| ∥f∥ for all f ∈ E and g ∈ F,
∥f + h∥ ≤ ∥f∥+ ∥h∥ for all f , h ∈ E.

An R(T)-valued norm on L2(T) for is defined by

∥f∥T,2 = (T|f |2)1/2 ∈ R(T)+

for f ∈ L2(T). From Grobler7 or Azouzi and Trabelsi8 we have
the following Riesz space Hölder’s inequality. If f ∈ L2(T) and
g ∈ L2(T), then gf ∈ L1(T) and

∥gf∥T,1 ≤ ∥g∥T,2∥f∥T,2.

7
J. J. GROBLER, Jensen’s and martingale inequalities in Riesz spaces, Indag. Math., N.S., 25 (2014), 275-295.

8
Y. AZOUZI, M. TRABELSI, Lp spaces with respect to conditional expectation on Riesz spaces, J. Math. Anal.

Appl. 447 (2017), 798-816.
12 / 24



E = L2(T) and its duals

Let E = L2(T).
We say that a map f : E → R(T) is a T-linear functional on
E if it is additive, R(T)-homogeneous and order continuous.
Since R(T) is a Dedekind complete Riesz space and E is a
Riesz space, a linear map from E to R(T) is order bounded
if and only if it is order continuous.
We denote the space of T-linear functionals on E by E∗ and
call it the T-dual of E.
We note that E∗ ⊂ Lb(E,R(T)), since R(T)-homogeneity
implies real linearity.
Further as R(T) is Dedekind complete, so is Lb(E,R(T)).9

9
C.D. ALIPRANTIS, O. BURKINSHAW, Positive operators, Academic press, 1985.
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Riesz-Kantorovich Lemma

Lemma (Riesz-Kantorovich)

The space E∗ is a Riesz space with respect to the partial
ordering f ≤ g if and only if f(x) ≤ g(x) for all x ∈ E+. This partial
ordering is equivalent to defining the lattice operations by

(f ∨ g)(x) := sup{f(y) + g(z) | y, z ∈ E+, y + z = x}

and

(f ∧ g)(x) := inf{f(y) + g(z) | y, z ∈ E+, y + z = x}

for all x ∈ E+ and extending these operators to E. Here fα ↓ 0 in
E∗ if and only if fα(x) ↓ 0 in E for each x ∈ E+. E∗ is Dedekind
complete and an R(T)-module.
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The strong dual
If f ∈ E∗ and there is k ∈ R(T)+ such that

|f(g)| ≤ k∥g∥T,2, for all g ∈ E,

we say that f is T-strongly bounded.
We denote the space of T-strongly bounded T-linear
functionals on E by

Ê := {f ∈ E∗ | f T-strongly bounded}

and refer to it as the T-strong dual of E. It is a Dedekind
complete Riesz subspace of E∗.
Further,

∥f∥ := inf{k ∈ R(T)+ | |f(g)| ≤ k∥g∥T,2 for all g ∈ E}

defines an R(T)-valued norm on Ê with

|f(g)| ≤ ∥f∥ ∥g∥T,2 (3)

for all g ∈ L2(T).
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Riesz-Frechet Theorem I

Let B denote the lattice of components of e in L2(T).
For brevity of notation, if f ∈ E+ then Pf will denote the
band projection onto the band generated by f in E and
pf := Pf e where e is the chosen weak order unit of E.
Here pf is a component of e in E. Further, due to E being
an Ee-module, and the definition of the multiplicative
structure, Pf g = pf g where on the left is the action of the
band projection Pf on g and on the right is the product of pf

and g, for g ∈ E.
For y ∈ E := L2(T) let Ty(x) := T(xy) for all x ∈ E, then
Ty ∈ Ê and

∥Ty∥ = ∥y∥T,2. (4)

The map Ψ : y 7→ Ty is R(T)-homogeneous, additive and
injective.
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Riesz-Frechet Theorem II

We take G = R(T), ψ(p) = g(p) and B to be the set of all
components of e in E.
The Abstract Hahn-Jordan Theorem is applicable and
gives that there is q ∈ B which is strongly positive with
respect to ψ and has e − q strongly negative with respect to
ψ. Take q+g := q.

Hence for each g ∈ Ê, there is a component q+g of e in E so
that g(pq+g ) ≥ 0 and g((e − q+g )p) ≤ 0 for all components p
of e in E.
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Riesz-Frechet Theorem

Theorem (Riesz-Frechet representation theorem)

For each f ∈ Ê there exists y(f) ∈ E := L2(T) such that f = Ty(f).
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Riesz-Frechet Theorem - Proof sketch I

Let f ∈ Ê.
We build a diadic approximation (sn) to y(f)+.
For all p ∈ B with p ≤ q+

f−2−nkT we have(
f− k

2n T
)
(p) ≥ 0

so
f(p) ≥ 2−nkT(p).

For all p ∈ B with p ≤ e − q+
f−2−n(k+1)T(

f− k + 1
2n T

)
(p) ≤ 0

so
f(p) ≤ 2−n(k + 1)T(p).
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Riesz-Frechet Theorem - Proof sketch II
Let

h1
k = q+

f−2−1kT(e − q+
f−2−1(k+1)T)

then h1
kh1

j = 0 for all k ̸= j so
∞∑

k=0

h1
k =: q+

is a component of e.
Here f(p) ≥ 0 for all p ∈ B with p ≤ q+ and f(p) ≤ 0 for all
p ∈ B with p ≤ e − q+.
For n ∈ N define

hn+1
2k = hn

kq+
f−2−n−1(2k+1)T

hn+1
2k+1 = hn

k(e − q+
f−2−n−1(2k+1)T).

Here hn
khn

j = 0 for all k ̸= j and
∞∑

k=0

hn
k = q+.
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Riesz-Frechet Theorem - Proof sketch I

The summation

sn :=

∞∑
k=0

k
2n hn

k

gives a diadic approximation to y(f)+.
For all p ∈ B,

k
2n T(phn

k) ≤ f(phn
k) ≤

k + 1
2n Tphn

k . (5)

Tsn ≤ f(q+) for all n ∈ N.
(sn) is increasing and (Tsn) is bounded in Eu by f(q+), so
(sn) converges in L1(T) to s.
It can be shown that s is also in L2(T).
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Riesz-Frechet Theorem - Proof sketch I

Working from (5), we have

T(psn) ≤ f(pq+) ≤ T(psn) +
1
2n T(p), (6)

Taking the order limit as n → ∞ in (6) gives

T(ps) = f(pq+). (7)

Applying Freudenthal’s theorem along with the order
continuity and linearity of T and f to (7) we have that

T(gs) = f(gq+), (8)

for all g ∈ E+. This extends by linearity to all g ∈ E. We
note here that s is in the band generated by q+.
Applying the above to −f gives y(f)−.
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Riesz-Frechet Theorem - Final version

Theorem

The map Ψ defined by Ψ(f )(g) := Tf (g) = T(fg) for f , g ∈ L2(T)
is a bijection between E = L2(T) and, its R(T)-homogeneous
strong dual, Ê. This map is additive, R(T)-homogeneous and
R(T)-valued norm preserving in the sense that ∥Tf ∥ = ∥f∥T,2 for
all f ∈ L2(T).
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End

Thank you!
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