

On the Boolean [Algebra Free](#page-34-0) Product

on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

On the Boolean Algebra Free Product via Carathéodory Spaces of Place Functions

Page Thorn

Research Advisor: Gerard Buskes

Department of Mathematics University of Mississippi

March 9, 2023

Table of Contents

On the Boolean [Algebra Free](#page-0-0) Product

[Introduction](#page-1-0)

on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

1 [Introduction](#page-1-0)

- [Riesz Spaces](#page-2-0)
- [Riesz Subspaces](#page-6-0) $\mathcal{L}_{\mathcal{A}}$
- [Tensor Products](#page-8-0)

[Main Result on Dedekind Completeness](#page-12-0)

3 [Boolean Algebras and their Free Product](#page-16-0)

- **[Free Product](#page-21-0)**
- Carathéodory Spaces of Place Functions ٠
- **[Applications](#page-30-0)**

On the Boolean [Algebra Free](#page-0-0) Product

[Riesz Spaces](#page-2-0)

on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

Definition

Let X be a partially ordered set. X is called a *lattice* if the supremum $(x \vee y)$ and infimum $(x \wedge y)$ exist for every pair of elements x and y in X.

Definition

Let V be a real vector space. V is an ordered vector space if V is partially ordered in such a way that the vector space structure and order structure are compatible. That is, for every x, y, $z \in V$ and $\lambda > 0$ in \mathbb{R} ,

1
$$
x \leq y
$$
 implies $x + z \leq y + z$, and

2 $x > 0$ implies $\lambda x > 0$ in V.

On the Boolean [Algebra Free](#page-0-0) Product

[Riesz Spaces](#page-2-0)

on Dedekind

[Algebras and](#page-16-0)

Definition

A Riesz space (also called a vector lattice) is an ordered vector space that is also a lattice with respect to the partial ordering.

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

[Riesz Spaces](#page-2-0)

on Dedekind

[Algebras and](#page-16-0)

Examples

- $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is a polynomial} \}$ is an ordered vector space.
- A function $p : \mathbb{R} \to \mathbb{R}$ is said to be a *piecewise polynomial* if there are $n \in \mathbb{N}$ and $t_1, \dots, t_n \in (-\infty, \infty)$ such that $t_1 < t_2 < \cdots < t_n$ and p is a polynomial function on $(-\infty, t_1]$, $[t_n,\infty)$ and $[t_i,t_{i+1}]$ for each $i=2,\cdots,n-1$.
- \blacksquare PP($\mathbb R$) is a Riesz space.

On the Boolean [Algebra Free](#page-0-0) Product

[Riesz Spaces](#page-2-0)

on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

Examples

- $C(X)$ is the set of real-valued continuous functions on a topological space X , e.g., $C[0, 1]$.
- $c(N)$ is the set of all convergent sequences.
- $c_0(N)$ is the set of all sequences convergent to zero.

Riesz Subspaces

Definitions

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

[Riesz Subspaces](#page-6-0)

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

1 The linear subspace V of E is called a Riesz subspace of E if f, $g \in V \implies f \vee g$, $f \wedge g \in V$.

Example: $PP([0,\infty)) \subseteq C[0,\infty)$.

2 The Riesz subspace I of E is called an *ideal* in E if

 $[f \in I, g \in E \text{ and } |g| \leq |f|] \implies g \in I.$

Example: Let $a \in [0, 1]$. Then $\{f \in C[0, 1] : f(a) = 0\}$ is an ideal in $C[0, 1]$.

3 The ideal B of E is called a band in E if

 $[D \subseteq B$ and sup(D) exists in $E] \implies \sup(D) \in B$. **Example:** For $a \in \mathbb{N}$, $\{f \in c(\mathbb{N}) : f(a) = 0\}$ is a band in $c(\mathbb{N})$.

7 / 35

Riesz Subspaces

Definitions

On the Boolean [Algebra Free](#page-0-0) Product

[Riesz Subspaces](#page-6-0)

on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

4 The band $[A]$ generated by the ideal A in the Riesz space E consists of all $f \in E$ satisfying

 $|f| = \sup\{u : u \in A, 0 \le u \le |f|\}.$

5 Let $f \in E$. The *principal ideal* generated by f , denoted E_f , is the smallest ideal of E containing f . In particular,

 $E_f = \{ g \in E : |g| \leq |\lambda f| \text{ for some } \lambda \in \mathbb{R} \}.$

Bilinear Maps and the Algebraic Tensor Product

Definition

On the Boolean [Algebra Free](#page-0-0) Product

[Tensor Products](#page-8-0)

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Let X, Y and Z be vector spaces. A map
$$
T: X \times Y \rightarrow Z
$$
 is *bilinear* if
 $T(x_1 + x_2, y) = T(x_1, y) + T(x_2, y)$ $(x_1, x_2 \in X, y \in Y);$

$$
T(x,y_1+y_2)=T(x,y_1)+T(x,y_2) \quad (x \in X, y_1, y_2 \in Y);
$$

\n
$$
\lambda T(x,y)=T(\lambda x,y)=T(x,\lambda y) \quad (\lambda \in \mathbb{R}, x \in X, y \in Y).
$$

The Universal Property

For every bilinear map $A: X \times Y \rightarrow Z$, there exists a unique linear map $L: X \otimes Y \rightarrow Z$ such that the diagram below commutes.

Riesz Bimorphisms

On the Boolean [Algebra Free](#page-0-0) Product

[Tensor Products](#page-8-0)

on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Let E and F be Riesz spaces. A linear mapping $T: E \rightarrow F$ is a Riesz homomorphism if

$$
T(x \vee y) = T(x) \vee T(y)
$$

for every $x \in E$ and $y \in F$.

Definition

Definition

Let E, F, and G be Archimedean Riesz spaces. A Riesz bimorphism is a bilinear map $T : E \times F \rightarrow G$ such that the maps

$$
z \longmapsto T(z,y) : E \to G
$$

$$
z \longmapsto T(x,z) : F \to G
$$

are Riesz homomorphisms for all $x \in E^+$ and all $y \in F^+.$

Fremlin Tensor Product

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

[Tensor Products](#page-8-0)

Main Result on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

Theorem (Fremlin 1972)

Let E and F be Archimedean Riesz spaces. There exists an Archimedean Riesz space G and a Riesz bimorphism $\varphi: E \times F \to G$ with the following properties.

1 Whenever H is an Archimedean Riesz space and $\psi \colon E \times F \to H$ is a Riesz bimorphism, there is a unique Riesz homomorphism $T: G \rightarrow H$ such that $T \circ \varphi = \psi$.

Any G satisfying this property is the Archimedean Riesz space (or Fremlin) tensor product of E and F, denoted $E\bar{\otimes}F$.

On the Boolean [Algebra Free](#page-0-0) Product

[Tensor Products](#page-8-0)

on Dedekind

[Algebras and](#page-16-0)

Theorem (Fremlin 1972)

2 If $\psi(x, y) > 0$ in H whenever $x > 0$ in E and $y > 0$ in F, then $E \overline{\otimes} F$ may be identified with the Riesz subspace of H generated by ψ [$E \times F$]. If $h \in E \overline{\otimes} F$, there exist finite sets I, J of N and $g_{ii} \in E \otimes F$ such that

 $h = \sup_{i \in I} \inf_{j \in J} \{g_{ij}\},\$

where $\textit{g}_{ij}=\sum_{i=1}^{n}\textit{e}_{i}\otimes\textit{f}_{i}$ for some $\textit{n}\in\mathbb{N},\textit{e}_{i}\in\textit{E},$ and $\textit{f}_{i}\in\textit{F}.$

Table of Contents

On the Boolean [Algebra Free](#page-0-0) Product

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

[Introduction](#page-1-0)

- [Riesz Spaces](#page-2-0)
- [Riesz Subspaces](#page-6-0) $\mathcal{L}_{\mathcal{A}}$
- **[Tensor Products](#page-8-0)**

2 [Main Result on Dedekind Completeness](#page-12-0)

3 [Boolean Algebras and their Free Product](#page-16-0)

- **[Free Product](#page-21-0)**
- Carathéodory Spaces of Place Functions
- **[Applications](#page-30-0)**

On the Boolean [Algebra Free](#page-0-0) Product

Main Result on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

Definition

Let E be an Archimedean Riesz space and let I be a nonempty set. $c_{00}(I, E)$ is the set of all maps $f: I \rightarrow E$ such that

$$
S(f) = \{x \in I : f(x) \neq 0\}
$$

is finite. We refer to $S(f)$ as the support of f. We write $c_{00}(I)$ in place of $c_{00}(I,\mathbb{R})$.

Main Result

On the Boolean [Algebra Free](#page-0-0) **Product**

Page Thorn

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Theorem (Buskes, Thorn 2022)

Suppose E and F are Dedekind complete. The following are equivalent.

- \blacksquare $E_{\mathsf{x}}\bar{\otimes}F_{\mathsf{y}}$ is Dedekind complete for every $\mathsf{x}\in E^+$ and $\mathsf{y}\in F^+.$
- 2 $\left[E_\times \right]$ is finite dimensional $\forall \times \in E^+ \right]$ or $\left[F_\gamma \right]$ is finite dimensional $\forall y \in F^+$].
- **3** $E \cong c_{00}(I)$ for a set $I \subseteq E$ or $F \cong c_{00}(J)$ for a set $J \subseteq F$.
- **4** $E \bar{\otimes} F \cong c_{00}(I, F)$ for a set $I \subseteq E$ or $E \bar{\otimes} F \cong c_{00}(J, E)$ for a set $J \subset F$.
- $\overline{5}$ $\overline{E} \otimes \overline{F}$ is Dedekind complete.

Motivation

On the Boolean [Algebra Free](#page-0-0) Product

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Theorem (Fremlin 1995)

Let A and B be Boolean algebras. $A \otimes B$ is complete if and only if either $A = \{0\}$ or $B = \{0\}$ or A is finite and B is complete or B is finite and A is complete.

Table of Contents

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind [Completeness](#page-12-0)

Boolean [Algebras and](#page-16-0) their Free Product

[Introduction](#page-1-0)

- [Riesz Spaces](#page-2-0)
- [Riesz Subspaces](#page-6-0) m.
- **[Tensor Products](#page-8-0)**

[Main Result on Dedekind Completeness](#page-12-0)

3 [Boolean Algebras and their Free Product](#page-16-0)

- [Free Product](#page-21-0)
- Carathéodory Spaces of Place Functions
- **[Applications](#page-30-0)**

Boolean Algebras

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind **[Completeness](#page-12-0)**

Boolean [Algebras and](#page-16-0) their Free Product

A lattice X is called *distributive* if

$$
x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)
$$

for all x, y, z in X .

Definition

A Boolean algebra is a distributive lattice with zero 0 and unit 1 having the property that every element has a complement.

Definition

A Boolean algebra is complete if every subset has a supremum.

Boolean Algebra of Bands

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

on Dedekind [Completeness](#page-12-0)

Boolean [Algebras and](#page-16-0) their Free Product

As an intermediary between Archimedean Riesz spaces and Boolean algebras, we consider Boolean algebras of bands.

Theorem

Define
$$
B(E) = \{B \subseteq E : B \text{ is a band}\}.
$$

- 1 $\{0\}$ and E are elements of $\mathcal{B}(E)$;
- 2 intersections of bands are bands:
- 3 for any subset D of E, the disjoint complement of D, which is

$$
D^d = \{f \in E : |f| \wedge |g| = 0 \text{ for all } g \in D\},\
$$

is an element of $\mathcal{B}(E)$.

 $B(E)$, partially ordered by inclusion, is a complete Boolean algebra if E is Archimedean.

Bands

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind **[Completeness](#page-12-0)**

Boolean [Algebras and](#page-16-0) their Free Product

Theorem (Luxemburg, Zaanen)

If the Archimedean Riesz space E has the property that any set of mutually disjoint nonzero elements is finite, then E is of finite dimension.

Lemma

Let E be a Riesz space and f, $g \in E$. Then $|f| \wedge |g| = 0$ implies $[f] \perp [g].$

Corollary

If E is an infinite dimensional Archimedean Riesz space, then $\mathcal{B}(E)$ is not finite.

Boolean Homomorphisms

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind [Completeness](#page-12-0)

Boolean [Algebras and](#page-16-0) their Free Product

Definition

Let A and B be Boolean algebras. A map $\chi: \mathcal{A} \to \mathcal{B}$ is said to be a Boolean homomorphism if for all $x, y \in A$,

 $\mathbf{1} \quad \chi(x \wedge y) = \chi(x) \wedge \chi(y);$

$$
2 \chi(x \oplus y) = \chi(x) \oplus \chi(y);
$$

$$
\mathbf{3} \ \ \chi(1_{\mathcal{A}}) = 1_{\mathcal{B}}.
$$

A bijective Boolean homomorphism is called a Boolean isomorphism. If there exists an isomorphism $\chi: A \rightarrow B$, then the Boolean algebras A and B are said to be *isomorphic*.

Boolean Algebra Tensor Product

Theorem (Fremlin 1995)

On the Boolean [Algebra Free](#page-0-0) Product

Main Result on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

[Free Product](#page-21-0)

1 Let $\{A_i\}_{i\in I}$ be a family of Boolean algebras. For each $i \in I$, let Z_i be the Stone space of A_i . Set $Z = \prod_{i \in I} Z_i$, with the product topology. Then the free product of $\{A_i\}_{i\in I}$ is the algebra of open-and-closed sets in Z , denoted \otimes .

2 For $i \in I$ and $a \in A_i$, the set $\hat{a} \subseteq Z_i$ representing a is an open-and-closed subset of Z_i ; because $z \mapsto z(i)$: $Z \rightarrow Z_i$ is continuous,

$$
\epsilon_i(a) = \{z : z(i) \in \hat{a}\}\
$$

is open-and-closed, so belongs to A. In this context, $\epsilon_i : A_i \to A$ is called the canonical map.

Boolean Algebra Tensor Product

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

[Free Product](#page-21-0)

Theorem (Fremlin 1995)

Let $\{\mathcal{A}_i\}_{i\in I}$ be a family of Boolean algebras, with free product \mathcal{A} .

- 1 The canonical map $\epsilon_i: \mathcal{A}_i \to \mathcal{A}$ is a Boolean homomorphism for every $i \in I$.
- 2 For any Boolean algebra B and any family $\{\varphi_i\}_{i\in I}$ such that φ_i is a Boolean homomorphism from A_i to B for every *i*, there is a unique Boolean homomorphism $\varphi: A \to B$ such that $\varphi_i = \varphi \circ \epsilon_i$ for each *i*.
- 3 Write C for the set of those members of A expressible in the form inf_{i∈J} ∈_i(a_i), where $J \subseteq I$ is finite and $a_i \in A_i$ for every *i*. Then every member of $\mathcal A$ is expressible as the supremum of a disjoint finite subset of C.

Example: A, B - collection of open and closed intervals in $\mathbb R$

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind

[Algebras and](#page-16-0)

[Free Product](#page-21-0)

Carathéodory Place Functions

On the Boolean [Algebra Free](#page-0-0) Product

Main Result on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

Carathéodory Spaces of Place Functions

Definition

Let E be a Riesz space and $e\in E^+$. Then $x\in E^+$ is said to be a component of e whenever $x \wedge (e - x) = 0$. $C(e)$ is the set of all component of e.

Theorem (Buskes, de Pagter, van Rooij 2008)

Let A be a Boolean algebra. There exists an Archimedean Riesz space E with an order unit e with the following properties.

- 1 There exists a Boolean isomorphism $\chi: \mathcal{A} \to \mathcal{C}(e)$.
- 2 E is the linear span of $C(e)$.

 (E, χ) is unique up to isomorphism. It is denoted by $C(\mathcal{A})$ and is called the space of place functions on A in the sense of Carathéodory.

Complete Boolean Algebra

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind

[Algebras and](#page-16-0)

Carathéodory Spaces of Place Functions

Theorem

Let A be a Boolean algebra. A is complete if and only if $C(A)$ is Dedekind complete.

Main Boolean Algebra Result

On the Boolean [Algebra Free](#page-0-0) Product

Theorem

Page Thorn

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Carathéodory Spaces of Place Functions

$C(A)\overline{\otimes}C(B)$ and $C(A\otimes B)$ are Riesz isomorphic.

Sketch of Proof: For $f \in C(A)$ and $g \in C(B)$, there exist $n, m \in \mathbb{N}$, pairwise disjoint $x_i\in \mathcal{C}(\sf{a})$, pairwise disjoint $u_j\in \mathcal{C}(\sf{b})$, and nonzero $\lambda_i, \, \gamma_j\in \mathbb{R}\in \mathbb{R}$ such that $f = \sum_{i=1}^n \lambda_i \chi_A(x_i)$ and $g = \sum_{j=1}^m \gamma_j \chi_B(u_j)$. Define $\psi: \mathcal{C}(\mathcal{A}) \times \mathcal{C}(\mathcal{B}) \to \mathcal{C}(\mathcal{A} \otimes \mathcal{B})$ by

$$
\psi(f,g) = \psi\left(\sum_{i=1}^n \lambda_i \chi_A(x_i), \sum_{j=1}^m \gamma_j \chi_B(u_j)\right)
$$

=
$$
\sum_{i=1}^n \sum_{j=1}^m (\lambda_i \gamma_j) \hat{\chi}(\epsilon_A(x_i) \wedge \epsilon_B(u_j)).
$$

 ψ is a Riesz bimorphism,so there exists a unique Riesz homomorphism $T: C(\mathcal{A})\overline{\otimes}C(\mathcal{B})\to C(\mathcal{A}\otimes\mathcal{B})$ such that $\psi = T\circ \otimes$.

$\overline{\mathcal{T}}: \, \overline{\mathcal{C}(\mathcal{A})} \bar{\otimes} \, \overline{\mathcal{C}(\mathcal{B})} \rightarrow \overline{\mathcal{C}(\mathcal{A} \otimes \mathcal{B})}$ is onto.

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Carathéodory Spaces of Place Functions

Let $h \in C(\mathcal{A} \otimes \mathcal{B})$. Then $h = \sum_{i=1}^{n} \lambda_i \hat{\chi}(e_i)$ for some pairwise disjoint $e_i \in \mathcal{A} \otimes \mathcal{B}$, $n \in \mathbb{N}$, and nonzero $\lambda_i \in \mathbb{R}$. Fix $i \in \{1, \cdots, n\}$. By Fremlin's properties of $\mathcal{A} \otimes \mathcal{B}$, there exists a finite disjoint subset $\{\epsilon_A(a_k) \wedge \epsilon_B(b_k)\}_{k=1}^m$ $(m \in \mathbb{N})$ of $A \otimes B$ such that

$$
e_i=\bigvee_{k=1}^m \epsilon_A(a_k)\wedge \epsilon_B(b_k).
$$

Then it follows from the definition of ψ that

$$
\hat{\chi}(e_i) = \hat{\chi}\left(\bigvee_{k=1}^m \epsilon_A(a_k) \wedge \epsilon_B(b_k)\right)
$$
\n
$$
= \bigvee_{k=1}^m \hat{\chi}(\epsilon_A(a_k) \wedge \epsilon_B(b_k))
$$
\n
$$
= \bigvee_{k=1}^m \psi(\chi_A(a_k), \chi_B(b_k))
$$
\n
$$
= \bigvee_{k=1}^m T \circ \otimes (\chi_A(a_k), \chi_B(b_k)).
$$

Since T preserves finite suprema, $\hat{\chi}(e_i)$ is in the image of T for every *i*.It follows from the linearity of T that h is in the image of T .

$\overline{\mathcal{T}}\colon\thinspace\overline{\mathcal{C}(\mathcal{A})\bar\otimes\mathcal{C}(\mathcal{B})}\to\mathcal{C}(\mathcal{A}\otimes\overline{\mathcal{B}})$ is one-to-one

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

Carathéodory Spaces of Place Functions

Suppose $f \in C(\mathcal{A}) \otimes C(\mathcal{B})$, the algebraic tensor product of $C(\mathcal{A})$ and $C(\mathcal{B})$, such that f is nonzero. Then for some $n \in \mathbb{N}$, nonzero $\lambda_k \in \mathbb{R}$, and nontrivial $x_k \in A$, $u_k \in B$ such that

$$
f=\sum_{k=1}^n \lambda_k \chi_A(x_k)\otimes \chi_B(u_k).
$$

Since ϵ_A , ϵ_B , and $\hat{\chi}$ are injective Boolean isomorphisms,

$$
T(f) = T\left(\sum_{k=1}^{n} \lambda_k \chi_A(x_k) \otimes \chi_B(u_k)\right)
$$

=
$$
\sum_{k=1}^{n} \lambda_k \psi(\chi_A(x_k), \chi_B(u_k))
$$

=
$$
\sum_{k=1}^{n} \lambda_k \hat{\chi}(\epsilon_A(x_k) \wedge \epsilon_B(u_j))
$$

= 0.

$\overline{\mathcal{T}}\colon \overline{\mathcal{C}(\mathcal{A})\bar\otimes \mathcal{C}(\mathcal{B})\to \mathcal{C}(\mathcal{A}\otimes \mathcal{B})}$ is one-to-one

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

Carathéodory Spaces of Place Functions

Let $g \in C(\mathcal{A})\overline{\otimes} C(\mathcal{B})$ such that $g \neq 0$. By Theorem 2.2 of [\[1\]](#page-34-1), for all $\delta>0$ there exists $f\in \mathcal{C}(\mathcal{A})^+\otimes \mathcal{C}(\mathcal{B})^+$ such that

$$
0\leq |g|-f\leq \delta\hat{\chi}(1_{\mathcal{A}\otimes\mathcal{B}}).
$$

Since $C(\mathcal{A})\bar{\otimes}C(\mathcal{B})$ is Archimedean, choose $\delta > 0$ such that $|g| \wedge \delta \hat{\chi}(1_{A\otimes B}) \neq |g|$. Then f is nonzero. We have shown that $T(f) \neq 0$ when $0 \neq f \in C(\mathcal{A}) \otimes C(\mathcal{B})$. Since T is a Riesz homomorphism, $0 < T(f) < |T(g)|$. Therefore, $T(g) \neq 0$, and T is a Riesz isomorphism.

Finally, $C(\mathcal{A})\bar{\otimes}C(\mathcal{B})$ is Riesz isomorphic to $C(\mathcal{A}\otimes\mathcal{B})$.

Applications

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

[Applications](#page-30-0)

Theorem (Fremlin 1995)

Let A and B be Boolean algebras. $A \otimes B$ is complete if and only if either $A = \{0\}$ or $B = \{0\}$ or A is finite and B is complete or B is finite and A is complete.

Proof.

(\implies) It follows that $C(A \otimes B) \cong C(A) \overline{\otimes} C(B)$ is Dedekind complete. Then $C(A)$ and $C(B)$ are Dedekind complete, and so A and B are complete. It remains to show that one of the Boolean algebras is finite. By our main result on Dedekind completeness, the Dedekind completeness of $C(\mathcal{A})\overline{\otimes}C(\mathcal{B})$ implies that $C(\mathcal{A}) \cong c_{00}(I)$ for a set $I \subseteq C(\mathcal{A})$ or $C(\mathcal{B}) \cong c_{00}(J)$ for a set $J \subseteq C(\mathcal{B})$. Since each Carathéodory space of place functions contains a unit, $C(A)$ or $C(B)$ is finite dimensional. Thus, A is finite or β is finite.

 (\Leftarrow) The sufficiency is proven similarly via our main result on the Dedekind completeness of the tensor product.

Comparison of Results

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

Main Result on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

[Applications](#page-30-0)

Theorem (Fremlin 1995)

Let A and B be Boolean algebras. $A \otimes B$ is complete if and only if either $A = \{0\}$ or $B = \{0\}$ or A is finite and B is complete or B is finite and A is complete.

Theorem (Buskes, Thorn 2022)

Suppose E and F are Dedekind complete. The following are equivalent.

- \blacksquare $E_{\mathsf{x}}\bar{\otimes}F_{\mathsf{y}}$ is Dedekind complete for every $\mathsf{x}\in E^+$ and $\mathsf{y}\in F^+.$
- 2 $\left[E_{\sf x} \right]$ is finite dimensional $\forall {\sf x} \in E^+ \right]$ or $\left[F_{\sf y} \right]$ is finite dimensional $\forall y \in F^+$].
- 3 $E \cong c_{00}(I)$ for a set $I \subseteq E$ or $F \cong c_{00}(J)$ for a set $J \subseteq F$.
- 4 $E\bar{\otimes}F \cong c_{00}(I, F)$ for a set $I \subseteq E$ or $E\bar{\otimes}F \cong c_{00}(J, E)$ for a set $J \subseteq F$.
- **5** $E\overline{\otimes}F$ is Dedekind complete.

Applications

On the Boolean [Algebra Free](#page-0-0) Product

Main Result on Dedekind **[Completeness](#page-12-0)**

[Algebras and](#page-16-0)

[Applications](#page-30-0)

Corollary

Let E and F be infinite dimensional Archimedean Riesz spaces. Then $\mathcal{B}(E)\otimes\mathcal{B}(F)$ is not Boolean isomorphic to $\mathcal{B}(E\bar{\otimes}F)$.

Proof.

Since E and F are infinite dimensional, neither $\mathcal{B}(E)$ nor $\mathcal{B}(F)$ is finite. Then $\mathcal{B}(E) \otimes \mathcal{B}(F)$ is not complete by the previous theorem. However, the Boolean algebra of bands is complete for any Archimedean Riesz space, so $\mathcal{B}(E\bar{\otimes}F)$ is complete.

On the Boolean [Algebra Free](#page-0-0) Product

on Dedekind

[Applications](#page-30-0)

Thank you!

References

On the Boolean [Algebra Free](#page-0-0) Product

Page Thorn

Main Result on Dedekind [Completeness](#page-12-0)

[Algebras and](#page-16-0)

[Applications](#page-30-0)

P. D. Allenby and C. C. A. Labuschagne, On the uniform density of $C(X) \otimes C(Y)$ in $C(X \times Y)$, Indag. Math. (N.S.) 20 (2009), no. 1, 19–22.

G. Buskes, B. de Pagter, and A. van Rooij, The Loomis-Sikorski theorem revisited, Algebra Universalis 58 (2008), no. 4, 413–426.

G. Buskes and L.P. Thorn, Two results on Fremlin's Archimedean Riesz space tensor product, arXiv:2206.06283 (July 2022).

, On the Boolean algebra tensor product via Carath´eodory spaces of place functions, ArXiv:2301.11866 (October 2022).

D. H. Fremlin, Tensor products of Archimedean vector lattices, Amer. J. Math. 94 (1972), 777–798.

, Measure theory. Vol. 3, Torres Fremlin, Colchester, 2004, Measure algebras, Corrected second printing of the 2002 original.

W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Publishing Co., Amsterdam-London, 1971.