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Riesz Spaces

Definition

Let X be a partially ordered set. X is called a lattice if the supremum
(x ∨ y) and infimum (x ∧ y) exist for every pair of elements x and y
in X .

Definition

Let V be a real vector space. V is an ordered vector space if V is
partially ordered in such a way that the vector space structure and
order structure are compatible. That is, for every x , y , z ∈ V and
λ ≥ 0 in R,

1 x ≤ y implies x + z ≤ y + z , and

2 x ≥ 0 implies λx ≥ 0 in V .
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Riesz Spaces

Definition

A Riesz space (also called a vector lattice) is an ordered vector space
that is also a lattice with respect to the partial ordering.
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Riesz Spaces

Examples

V = {f : R → R | f is a polynomial} is an ordered vector space.

A function p : R → R is said to be a piecewise polynomial if
there are n ∈ N and t1, · · · , tn ∈ (−∞,∞) such that
t1 < t2 < · · · < tn and p is a polynomial function on (−∞, t1],
[tn,∞) and [ti , ti+1] for each i = 2, · · · , n − 1.

PP(R) is a Riesz space.

5 / 35



On the
Boolean

Algebra Free
Product

Page Thorn

Introduction

Riesz Spaces

Riesz Subspaces

Tensor Products

Main Result
on Dedekind
Completeness

Boolean
Algebras and
their Free
Product

Free Product
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Riesz Spaces

Examples

C (X ) is the set of real-valued continuous functions on a
topological space X , e.g., C [0, 1].

c(N) is the set of all convergent sequences.

c0(N) is the set of all sequences convergent to zero.
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Riesz Subspaces

Definitions

1 The linear subspace V of E is called a Riesz subspace of E if

f , g ∈ V =⇒ f ∨ g , f ∧ g ∈ V .

Example: PP([0,∞)) ⊆ C [0,∞).

2 The Riesz subspace I of E is called an ideal in E if

[f ∈ I , g ∈ E and |g | ≤ |f |] =⇒ g ∈ I .

Example: Let a ∈ [0, 1]. Then {f ∈ C [0, 1] : f (a) = 0} is an
ideal in C [0, 1].

3 The ideal B of E is called a band in E if

[D ⊆ B and sup(D) exists in E ] =⇒ sup(D) ∈ B.

Example: For a ∈ N, {f ∈ c(N) : f (a) = 0} is a band in c(N).
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Riesz Subspaces

Definitions

4 The band [A] generated by the ideal A in the Riesz space E
consists of all f ∈ E satisfying

|f | = sup{u : u ∈ A, 0 ≤ u ≤ |f |}.

5 Let f ∈ E . The principal ideal generated by f , denoted Ef , is
the smallest ideal of E containing f . In particular,

Ef = {g ∈ E : |g | ≤ |λf | for some λ ∈ R}.
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Bilinear Maps and the Algebraic Tensor Product

Definition

Let X , Y and Z be vector spaces. A map T : X ×Y → Z is bilinear if

T (x1 + x2, y) = T (x1, y) + T (x2, y) (x1, x2 ∈ X , y ∈ Y );
T (x , y1 + y2) = T (x , y1) + T (x , y2) (x ∈ X , y1, y2 ∈ Y );
λT (x , y) = T (λx , y) = T (x , λy) (λ ∈ R, x ∈ X , y ∈ Y ).

The Universal Property

For every bilinear map A : X × Y → Z , there exists a unique linear
map L : X ⊗ Y → Z such that the diagram below commutes.

X × Y

A
��

⊗ // X ⊗ Y

L
yy

Z
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Riesz Bimorphisms

Definition

Let E and F be Riesz spaces. A linear mapping T : E → F is a Riesz
homomorphism if

T (x ∨ y) = T (x) ∨ T (y)

for every x ∈ E and y ∈ F .

Definition

Let E , F , and G be Archimedean Riesz spaces. A Riesz bimorphism
is a bilinear map T : E × F → G such that the maps

z 7−→ T (z , y) : E → G
z 7−→ T (x , z) : F → G

are Riesz homomorphisms for all x ∈ E+ and all y ∈ F+.
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Fremlin Tensor Product

Theorem (Fremlin 1972)

Let E and F be Archimedean Riesz spaces. There exists an Archimedean
Riesz space G and a Riesz bimorphism φ : E × F → G with the following
properties.

1 Whenever H is an Archimedean Riesz space and ψ : E × F → H is a
Riesz bimorphism, there is a unique Riesz homomorphism T : G → H
such that T ◦ φ = ψ.

E × F

ψ

��

φ // G

T
||

H

Any G satisfying this property is the Archimedean Riesz space (or Fremlin)
tensor product of E and F , denoted E⊗̄F .
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Theorem (Fremlin 1972)

2 If ψ(x , y) > 0 in H whenever x > 0 in E and y > 0 in F , then E⊗̄F
may be identified with the Riesz subspace of H generated by
ψ[E × F ].
If h ∈ E⊗̄F , there exist finite sets I , J of N and gij ∈ E ⊗ F such that

h = sup
i∈I

inf
j∈J

{gij},

where gij =
∑n

i=1 ei ⊗ fi for some n ∈ N, ei ∈ E , and fi ∈ F .

12 / 35



On the
Boolean

Algebra Free
Product

Page Thorn

Introduction

Riesz Spaces

Riesz Subspaces

Tensor Products

Main Result
on Dedekind
Completeness

Boolean
Algebras and
their Free
Product

Free Product
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Carathéodory Spaces
of Place Functions

Applications

Definition

Let E be an Archimedean Riesz space and let I be a nonempty set.
c00(I ,E ) is the set of all maps f : I → E such that

S(f ) = {x ∈ I : f (x) ̸= 0}

is finite. We refer to S(f ) as the support of f . We write c00(I ) in
place of c00(I ,R).

14 / 35



On the
Boolean

Algebra Free
Product

Page Thorn

Introduction

Riesz Spaces

Riesz Subspaces

Tensor Products

Main Result
on Dedekind
Completeness

Boolean
Algebras and
their Free
Product

Free Product
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Main Result

Theorem (Buskes, Thorn 2022)

Suppose E and F are Dedekind complete. The following are
equivalent.

1 Ex⊗̄Fy is Dedekind complete for every x ∈ E+ and y ∈ F+.

2 [Ex is finite dimensional ∀x ∈ E+] or [Fy is finite dimensional
∀y ∈ F+].

3 E ∼= c00(I ) for a set I ⊆ E or F ∼= c00(J) for a set J ⊆ F .

4 E ⊗̄F ∼= c00(I ,F ) for a set I ⊆ E or E ⊗̄F ∼= c00(J,E ) for a set
J ⊆ F .

5 E ⊗̄F is Dedekind complete.
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Motivation

Theorem (Fremlin 1995)

Let A and B be Boolean algebras. A⊗ B is complete if and only if
either A = {0} or B = {0} or A is finite and B is complete or B is
finite and A is complete.
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Boolean Algebras

A lattice X is called distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x , y , z in X .

Definition

A Boolean algebra is a distributive lattice with zero 0 and unit 1
having the property that every element has a complement.

Definition

A Boolean algebra is complete if every subset has a supremum.
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Boolean Algebra of Bands

As an intermediary between Archimedean Riesz spaces and Boolean
algebras, we consider Boolean algebras of bands.

Theorem

Define B(E ) = {B ⊆ E : B is a band}.

1 {0} and E are elements of B(E );

2 intersections of bands are bands;

3 for any subset D of E , the disjoint complement of D, which is

Dd = {f ∈ E : |f | ∧ |g | = 0 for all g ∈ D},

is an element of B(E ).

B(E ), partially ordered by inclusion, is a complete Boolean algebra if
E is Archimedean.
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Bands

Theorem (Luxemburg, Zaanen)

If the Archimedean Riesz space E has the property that any set of
mutually disjoint nonzero elements is finite, then E is of finite
dimension.

Lemma

Let E be a Riesz space and f , g ∈ E. Then |f | ∧ |g | = 0 implies
[f ] ⊥ [g ].

Corollary

If E is an infinite dimensional Archimedean Riesz space, then B(E ) is
not finite.
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Boolean Homomorphisms

Definition

Let A and B be Boolean algebras. A map χ : A → B is said to be a
Boolean homomorphism if for all x , y ∈ A,

1 χ(x ∧ y) = χ(x) ∧ χ(y);

2 χ(x ⊕ y) = χ(x)⊕ χ(y);

3 χ(1A) = 1B.

A bijective Boolean homomorphism is called a Boolean isomorphism.
If there exists an isomorphism χ : A → B, then the Boolean algebras
A and B are said to be isomorphic.
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Boolean Algebra Tensor Product

Theorem (Fremlin 1995)

1 Let {Ai}i∈I be a family of Boolean algebras. For each i ∈ I , let Zi be
the Stone space of Ai . Set Z =

∏
i∈I Zi , with the product topology.

Then the free product of {Ai}i∈I is the algebra of open-and-closed
sets in Z , denoted ⊗.

2 For i ∈ I and a ∈ Ai , the set â ⊆ Zi representing a is an
open-and-closed subset of Zi ; because z 7→ z(i) : Z → Zi is
continuous,

ϵi (a) = {z : z(i) ∈ â}
is open-and-closed, so belongs to A. In this context, ϵi : Ai → A is
called the canonical map.
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Boolean Algebra Tensor Product

Theorem (Fremlin 1995)

Let {Ai}i∈I be a family of Boolean algebras, with free product A.

1 The canonical map ϵi : Ai → A is a Boolean homomorphism for
every i ∈ I .

2 For any Boolean algebra B and any family {φi}i∈I such that φi is a
Boolean homomorphism from Ai to B for every i , there is a unique
Boolean homomorphism φ : A → B such that φi = φ ◦ ϵi for each i .

3 Write C for the set of those members of A expressible in the form
inf j∈J ϵj(aj), where J ⊆ I is finite and aj ∈ Aj for every j . Then every
member of A is expressible as the supremum of a disjoint finite
subset of C .
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Example: A, B - collection of open and closed
intervals in R

ϵA((0.2, 0.4)) ∈ A⊗ B, ϵB((0.6, 0.8)) ∈ A⊗ B

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ϵA((0.2, 0.4)) ∧ ϵB((0.6, 0.8))
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Carathéodory Spaces
of Place Functions

Applications

Carathéodory Place Functions

Definition

Let E be a Riesz space and e ∈ E+. Then x ∈ E+ is said to be a
component of e whenever x ∧ (e − x) = 0. C(e) is the set of all
component of e.

Theorem (Buskes, de Pagter, van Rooij 2008)

Let A be a Boolean algebra. There exists an Archimedean Riesz
space E with an order unit e with the following properties.

1 There exists a Boolean isomorphism χ : A → C(e).

2 E is the linear span of C(e).

(E , χ) is unique up to isomorphism. It is denoted by C(A) and is
called the space of place functions on A in the sense of Carathéodory.
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Complete Boolean Algebra

Theorem

Let A be a Boolean algebra. A is complete if and only if C(A) is
Dedekind complete.
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Main Boolean Algebra Result

Theorem

C (A)⊗̄C (B) and C (A⊗ B) are Riesz isomorphic.

Sketch of Proof: For f ∈ C(A) and g ∈ C(B), there exist n, m ∈ N, pairwise
disjoint xi ∈ C(a), pairwise disjoint uj ∈ C(b), and nonzero λi , γj ∈ R ∈ R such
that f =

∑n
i=1 λiχA(xi ) and g =

∑m
j=1 γjχB(uj ). Define

ψ : C(A)× C(B) → C(A⊗ B) by

ψ(f , g) =ψ

 n∑
i=1

λiχA(xi ),
m∑
j=1

γjχB(uj )


=

n∑
i=1

m∑
j=1

(λiγj )χ̂(ϵA(xi ) ∧ ϵB(uj )).

ψ is a Riesz bimorphism,so there exists a unique Riesz homomorphism
T : C(A)⊗̄C(B) → C(A⊗ B) such that ψ = T ◦ ⊗.
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T : C (A)⊗̄C (B) → C (A⊗ B) is onto.

Let h ∈ C(A⊗ B).Then h =
∑n

i=1 λi χ̂(ei ) for some pairwise disjoint ei ∈ A⊗ B,
n ∈ N, and nonzero λi ∈ R. Fix i ∈ {1, · · · , n}. By Fremlin’s properties of A⊗B,
there exists a finite disjoint subset {ϵA(ak ) ∧ ϵB(bk )}mk=1 (m ∈ N) of A⊗ B such
that

ei =
m∨

k=1

ϵA(ak ) ∧ ϵB(bk ).

Then it follows from the definition of ψ that

χ̂(ei ) =χ̂

(
m∨

k=1

ϵA(ak ) ∧ ϵB(bk )
)

=
m∨

k=1

χ̂(ϵA(ak ) ∧ ϵB(bk ))

=
m∨

k=1

ψ(χA(ak ), χB(bk ))

=
m∨

k=1

T ◦ ⊗(χA(ak ), χB(bk )).

Since T preserves finite suprema, χ̂(ei ) is in the image of T for every i .It follows
from the linearity of T that h is in the image of T .
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T : C (A)⊗̄C (B) → C (A⊗ B) is one-to-one

Suppose f ∈ C (A)⊗C (B), the algebraic tensor product of C (A) and
C (B), such that f is nonzero.Then for some n ∈ N, nonzero λk ∈ R,
and nontrivial xk ∈ A, uk ∈ B such that

f =
n∑

k=1

λkχA(xk)⊗ χB(uk).

Since ϵA, ϵB , and χ̂ are injective Boolean isomorphisms,

T (f ) =T

(
n∑

k=1

λkχA(xk)⊗ χB(uk)

)

=
n∑

k=1

λkψ (χA(xk), χB(uk))

=
n∑

k=1

λk χ̂(ϵA(xk) ∧ ϵB(uj))

̸=0.
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T : C (A)⊗̄C (B) → C (A⊗ B) is one-to-one

Let g ∈ C (A)⊗̄C (B) such that g ̸= 0.
By Theorem 2.2 of [1], for all δ > 0 there exists f ∈ C(A)+ ⊗ C(B)+
such that

0 ≤ |g | − f ≤ δχ̂(1A⊗B).

Since C (A)⊗̄C (B) is Archimedean, choose δ > 0 such that
|g | ∧ δχ̂(1A⊗B) ̸= |g |. Then f is nonzero.
We have shown that T (f ) ̸= 0 when 0 ̸= f ∈ C(A)⊗ C(B).
Since T is a Riesz homomorphism, 0 < T (f ) ≤ |T (g)|. Therefore,
T (g) ̸= 0, and T is a Riesz isomorphism.

Finally, C (A)⊗̄C (B) is Riesz isomorphic to C (A⊗ B).
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Applications

Theorem (Fremlin 1995)

Let A and B be Boolean algebras. A⊗ B is complete if and only if
either A = {0} or B = {0} or A is finite and B is complete or B is
finite and A is complete.

Proof.

(=⇒) It follows that C(A⊗ B) ∼= C(A)⊗̄C(B) is Dedekind complete. Then
C(A) and C(B) are Dedekind complete, and so A and B are complete. It
remains to show that one of the Boolean algebras is finite.
By our main result on Dedekind completeness, the Dedekind completeness
of C(A)⊗̄C(B) implies that C(A) ∼= c00(I ) for a set I ⊆ C(A) or
C(B) ∼= c00(J) for a set J ⊆ C(B). Since each Carathéodory space of place
functions contains a unit, C(A) or C(B) is finite dimensional. Thus, A is
finite or B is finite.
(⇐=) The sufficiency is proven similarly via our main result on the
Dedekind completeness of the tensor product.
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Comparison of Results

Theorem (Fremlin 1995)

Let A and B be Boolean algebras. A⊗ B is complete if and only if either
A = {0} or B = {0} or A is finite and B is complete or B is finite and A is
complete.

Theorem (Buskes, Thorn 2022)

Suppose E and F are Dedekind complete. The following are equivalent.

1 Ex⊗̄Fy is Dedekind complete for every x ∈ E+ and y ∈ F+.

2 [Ex is finite dimensional ∀x ∈ E+] or [Fy is finite dimensional
∀y ∈ F+].

3 E ∼= c00(I ) for a set I ⊆ E or F ∼= c00(J) for a set J ⊆ F .

4 E⊗̄F ∼= c00(I ,F ) for a set I ⊆ E or E⊗̄F ∼= c00(J,E) for a set J ⊆ F .

5 E⊗̄F is Dedekind complete.
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Carathéodory Spaces
of Place Functions

Applications

Applications

Corollary

Let E and F be infinite dimensional Archimedean Riesz spaces. Then
B(E )⊗ B(F ) is not Boolean isomorphic to B(E ⊗̄F ).

Proof.

Since E and F are infinite dimensional, neither B(E ) nor B(F ) is
finite. Then B(E )⊗ B(F ) is not complete by the previous theorem.
However, the Boolean algebra of bands is complete for any
Archimedean Riesz space, so B(E ⊗̄F ) is complete.
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Thank you!
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