Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastiqu matrices

Maximal monoid

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

December 7, 2022

<□> <@> < E> < E> E のQで 1/19

Affine subspaces

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

- We work in \mathbb{R}^d .
- A non empty affine subspace is a translate of a linear subspace.
- The dimension of an affine subspace is the dimension of the corresponding linear vector subspace.

• Affine maps are in the form : $x \mapsto Ax + x_0$.

Polytopes

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

The following elementary notions on polytopes are from [2].

Definition

A polytope is the convex hull of a finite set of points in some \mathbb{R}^d .

• The dimension of a polytope is the dimension of it's affine hull.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

• Two dimentional polytopes are called polygones.

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Definition

A half space is a set $P \subset \mathbb{R}^d$ presented in the form $P = \{X \in \mathbb{R}^d : AX \leq Z\}$ for some $A \in M_{n,d}(\mathbb{R})$ and $Z \in \mathbb{R}^n$. A polyhedron is an intersection of closed half spaces.

Theorem

 $P \subset \mathbb{R}^d$ is a polytope if and only if P is a bounded polyhedron.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 約९(2) 4/19

Faces

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Definition

 $F \subset \mathbb{R}^d$ is called a face of a polytope P if there exists an hyperplane $H = \{X \in \mathbb{R}^d : {}^t CX = c_0\}$, for some $C \in \mathbb{R}^d$ and $c_0 \in \mathbf{R}$, such that $F = P \cap H$ where ${}^t CX \leq c_0$ is a valid inequality for P.

Example

 $OX \le 0$ is a valid inequality for P then P itself is a face of P. $OX \le 1$ gives that \emptyset is a face of P.

Faces of dimension 0 are called vertices, of dimension 1 edges and of dimension dim(P) - 1 facets.

Vertices

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Let us denote vert(P) the set of vertices of P.

Proposition

Consider P a polytope, then P = conv(vert(P)).

Proposition

Consider P a polytope and V = vert(P). Let F be a face of P. Then:

- F is a polytope and $vert(F) = F \cap V$.
- 2 Every intersection of faces is a face.
- **S** The faces of F are exactly the faces of P contained in F.
- $F = P \cap aff(F)$.

Characterization of the nonnegative idempotent matrices:

Stochastique matrices and polytopes

Theorem (P. Flor)

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid Let A be a nonnegative idempotent matrix of rank k. Then, there exists a permutation matrix P such that

$$PA^{t}P = \begin{pmatrix} J & JU & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline VJ & VJU & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}$$

V and U non negative matrices with the appropriate size and $J = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ \hline 0 & J_2 & \cdots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & \cdots & 0 & J_r \end{pmatrix} \text{ each } J_k \text{ is rank one.}$

Steps of the proof

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid The following proof is from [3]. For a proof that does not use polytopes one can see [4]

Proof.

Assume first that A has no zero rows and no zero column. Consider:

- $e_1, .., e_n$ the canonical bases of \mathbb{R}^n .
- $C_1, ..., C_n$ the columns of A.
- K the polytope generated by $C_1, ... C_n$.
- $E_1, ..., E_k$ the edges of K.
- $M_j = \{e_i, i \in [1, n] : C_i \in E_j\}$. $S_j = vect(M_j)$.

Then $AS_j = E_j$. The restriction of A to S_j has rank one. By rearranging the cordinate in such a way that the unit vectors belonging to each S_j are regroupped together. We obtain the matrix J of the theorem.

Stochastique matrices

Proof.

For the general case there exists a permutation matrix P_1 such that

$$P_1 A^t P_1 = \begin{pmatrix} X & B & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline C & D & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}$$

X and B have no zero rows in common and X and C have no zero columns in common. A is idempotent then $X^2 = X$. XB = B CX = C and CB = D. Then X has no zero columns. and rows. So we apply the first case to X. There exists a permutation matrix P_2 such that $J = P_2 X^t P_2$ is in the form we want. Then setting $U = P_2 B$ and $V = C^t P$. Taking $P = P_3 P_1$ with $P_3 = \left(\begin{array}{c|c} P_2 & 0 \\ \hline 0 & I \end{array} \right)$. PA^tP has the form given by the

theorem.

Stochastique matrices

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Theorem

Let A be an idempotent stochastic matrix of rank k. Then, A is an idempotent if and only if there exists a permutation matrix P such that

$$PA^tP = \left(\begin{array}{c|c} J & 0 \\ \hline VJ & 0 \end{array} \right)$$

V arbitrary positive and

$$J = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ \hline 0 & J_2 & \cdots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & \cdots & 0 & J_r \end{pmatrix}$$

each J_k is rank one.

Doubly stochastique matrices.

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Theorem

Let A be an idempotent doubly stochastic matrix of rank k. Then, A is an idempotent if and only if there exists a permutation matrix P such that

$$PA^{t}P = egin{pmatrix} rac{J_{1} & 0 & \cdots & 0}{0 & J_{2} & \cdots & 0} \ rac{\vdots & \vdots & \ddots & \vdots}{0 & \cdots & 0 & J_{r}} \end{pmatrix}$$

each J_k is rank one where, if J_i is $n_i \times n_i$ then each entry of J_i is $1/n_i$.

Example

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Consider the idempotent stochastique of rank 2 $A = \begin{pmatrix} 1/3 & 0 & 2/3 \\ 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \end{pmatrix}$. We take $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. We obtain $J = PA^t P = \begin{pmatrix} 1/3 & 2/3 & 0 \\ 1/3 & 2/3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Remark

The J_i in the matrix J are of rank one. So there exists X_i and Y_i in \mathbb{R}^{d_i} such that $J_i = X_i^t Y_i$ and $1 = {}^t Y_i X_i$.

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

We denote by

- St_n the semigroup of stochastic matrices of order n.
- D_n the semigroup of doubly stochastic matrices of order n.

Theorem

The set St_n is a convex polytope of dimension n(n-1) whose vertices are all the stochastic matrices having 0 or 1 in any of their entries, n^n vertices in total.

Example

The 2-dimensional compact affine semigroup St₂ has the four vertices:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
$$F = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

Birkhoff's theorem

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Theorem (Birkhoff)

The set D_n is a convex polytope of dimension $(n-1)^2$ whose vertices constitute the permutation matrices of order n, that is, every doubly stochastique matrice is a convex combination of permutation matrices.

We associate to a doubly stochastic matrix a bipartite graph as follows. We represent each row and each column with a vertex and we connect the vertex representing row i with the vertex representing row j if the entry $x_{i,j}$ in the matrix is not zero. To prove this theorem we need the following lemma. For details see [5].

Perfect matching

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Definition

A perfect matching in a graph G is a matching in which every vertex of G appears exactly once, that is, a matching of size exactly n/2.

Lemma

The associated graph of any doubly stochastic matrix has a perfect matching.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 15/19

Proof of Birkhoff's

Proof.

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid We proceed by induction on the number of nonzero entries in the matrix. Let M_0 be a doubly stochastic matrix. By the key lemma, the associated graph has a perfect matching. Underline the entries associated to the edges in the matching. Thus we underline exactly one element in each row and each column. Let α_0 be the minimum of the underlined entries. Let P_0 be the permutation matrix that has a 1 exactly at the position of the underlined elements. If $\alpha_0 = 1$ then all underlined entries are 1, and $M_0 = P_0$ is a permutation matrix. If $\alpha_0 < 1$ then the matrix $M_0 - \alpha_0 P_0$ has non-negative entries, and the sum of the entries in any row or any column is $1 - \alpha_0$. Dividing each entry by $(1 - \alpha_0)$ in $M_0 - \alpha_0 P_0$ gives a doubly stochastic matrix M_1 . Thus we may write $M_0 = \alpha_0 P_0 + (1 - \alpha_0) M_1$ where M_1 is not only doubly stochastic, but has less non-zero entries than M_0 . We conclude by induction.

9

Maximal monoid

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

Definition

Let S be a semigroup and e be an idempotent of S. Then, $eSe = \{x \in S | ex = xe = x\}$ is called the maximal monoid of S relative to e.

For the proof of the following theorem see [1].

Theorem

Let A be an idempotent of rank k in St_n . Then, ASt_nA is affinely isomorphic to St_k . The maximal monoid ASt_nA is a convex polytope of dimension k(k-1) with k^k vertices.

References

Stochastique matrices and polytopes

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastique matrices

Maximal monoid

- A geometric description of the maximal monoidsof some matrix semigroups Raul E. Gonzalez-Torres
- Lectures on Polytopes. Gunter M.Ziegler , New York (1995)

Non negative matrices in the mathematical sciences. A.Berman, R.Plemmons.

Constructing the maximal monoids in the semigroups N_n , S_n and Ω_n . D.J.HARTFIEL, C.J.MAXSON

Gabor Hetyei. Birkhoff's theorem. 2007.

Dorsaf Cherif University Tunis El Manar

Polytopes

Stochastiqu matrices

Maximal monoid Thank you for your attention.