Tensor products of Archimedean partially ordered vector spaces

Damla Yaman Yildiz Technical University

December 2022

Damla Yaman Yildiz Technical University Tensor products of Archimedean partially orde

December 2022

- Introduction
- Algebraic tensor product and the projective cone
- **③** Riesz completions and Fremlin's tensor product as Riesz completion
- Construction of the cone in the tensor product of directed Archimedean POVS

Introduction

(Fremlin, 1972)

- construction of the Riesz tensor product
- representation as the space of continuous functions : $C(X) \otimes C(Y)$ linear subspace of $C(X \times Y)$

(Grobler and Labuschagne, 1988)

- construction of the Fremlin tensor product by means of Dedekind completions
- construction of the tensor product of directed Archimedean POVS with the Riesz decomposition property
- the relative uniform closure of the projective cone is again a cone

Gaans and Kalauch, 2010

 showed ru-closure of the projective cone in X ⊗ Y is again a cone by using Riesz completions of Archimedean POVS X and Y and their Fremlin tensor product

Tensor product (algebraic)

Let X and Y be real vector spaces. The tensor product of X and Y is a pair (T, τ) satisfying the following:

- T is a vector space and $\tau : X \times Y \rightarrow T$ is a bilinear map
- if S is a vector space and $\sigma : X \times Y \to S$ is a bilinear map, then there is a unique linear map $\sigma^* : T \to S$ such that $\sigma(x, y) = \sigma^*(\tau(x, y))$ for all $x \in X$ and $y \in Y$.

There exists an essentially unique tensor product (T, τ) of X and Y and we denote it by $X \otimes Y$. For $x \in X$ and $y \in Y$,

$$x\otimes y=\tau(x,y)$$

Cone

- Let X be a real vector space. A nonempty set K ⊆ X is called a wedge in X if x, y ∈ K, λ, μ ∈ [0,∞) imply λx + μy ∈ K.
- If K is a wedge in X with the additional property K ∩ (−K) = 0 then K is called a cone in X.

Partial order

$$y \ge x \Longleftrightarrow y - x \in K$$

POVS

A vector space X with a given cone K equipped with the vector space order is called a partially ordered vector space.

< ロト < 同ト < ヨト < ヨト

(X, K) is called Archimedean if for every $x, y \in X$ with $nx \leq y$ for all $n \in \mathbf{N}$, one has $x \leq 0$.

A set $M \subseteq X$ is called directed if for every $x, y \in M$, there is an element $z \in M$ such that $z \ge x$ and $z \ge y$.

We say that X has the Riesz decomposition property if for every $y, x_1, x_2 \in K$ with $y \leq x_1 + x_2$, there exist $y_1, y_2 \in K$ such that $y = y_1 + y_2$ and $y_1 \leq x_1$, $y_2 \leq x_2$.

We say that K is generating X if K = K - K

Projective cone

We define the projective cone in the algebraic tensor product $T = X \otimes Y$ as

$$\mathcal{K}_{\mathcal{T}} := \{\sum_{i=1}^{n} \alpha_i x_i \otimes y_i : x_i \in \mathcal{K}_{\mathcal{X}}, y_i \in \mathcal{K}_{\mathcal{Y}}, \alpha_i \in \mathbf{R}^+, n \in \mathbf{N}\}$$

Theorem (Gaans, Kalauch, 2010)

 (T, K_T) is a partially ordered vector space. If X and Y are directed partially ordered vector spaces, then K_T is generating in T.

We denote for a subset $M \subseteq X$ the set of all upper bounds by

$$M^u = \{x \in X : x \ge m \text{ for all } m \in M\}$$

pre-Riesz space

A POVS X is called

- a pre-Riesz space if for every x, y, z ∈ X the inclusion {x + y, x + z}^u ⊆ {y, z}^u implies x ∈ K
- a Riesz space if the ordering is a lattice ordering.

pre-Riesz \implies directed

directed Archimedean POVS \implies pre-Riesz

 $Riesz \implies pre-Riesz$

Examples

- If K = {(x₁, x₂)^T; x₁ ≥ 0, x₂ ≥ 0}, then K induces the standard order on R², so that (R², K) is a Riesz space and hence a pre-Riesz space.
- $X = \mathbf{R}^2$ provided with the partial ordering defined by

$$(a,b) \leq (c,d) \Longleftrightarrow (a < c ext{ and } b < d) ext{ or } (a = c ext{ and } b = d)$$

is a directed POVS which is not pre-Riesz. Take x = (1,0) and $A = \{(-1,0), (0,0)\}$ as $(x + A)^u \subseteq A^u$. But $x \not\geq 0$.

We say that a subspace X of a Riesz space Y generates Y as a Riesz space if for every $y \in Y$ there exist $a_1, ..., a_m, b_1, ..., b_n \in X$ such that

$$y = \bigvee_{i=1}^m a_i - \bigvee_{i=1}^n b_i$$

Order denseness

A linear subspace D of a POVS X is called order dense in X if for every $x \in X$ we have $x = \inf\{y \in D : y \ge x\}$.

Let X and Y be directed POVS. The linear map $i: X \longrightarrow Y$ is

- a positive map if $x \leq y \Longrightarrow i(x) \leq i(y)$
- a bipositive map if $x \le y \iff i(x) \le i(y)$, for all $x, y \in X$.

Van Haandel, 1993

These statements are equivalent:

- X is pre-Riesz.
- ② There exist a Riesz space Y and a bipositive linear map i : X → Y such that i(X) is order dense in Y.
- So There exist a Riesz space Y and a bipositive linear map i : X → Y such that i(X) is order dense in Y and generates Y as a Riesz space.

A pair (Y, i) as in 3 is called a Riesz completion of X. We will denote it as X^{ρ} .

The Riesz completion is unique up to Riesz isomorphisms. Every directed partially ordered vector space has a Riesz completion.

December 2022

Van Haandel, 1993

Let X and Y be directed POVS. A linear map $h: X \longrightarrow Y$ is called a Riesz* homomorphism if for any $a, b \in X$ and for every lower bound x of $\{a, b\}^u$ in X one has that h(x) is a lower bound of $\{h(a), h(b)\}^u$ in Y

- If X, Y are Riesz spaces, then $h: X \longrightarrow Y$ is Riesz* homomorphism $\iff h$ is Riesz homomorphism.
- If X, Y are pre-Riesz spaces, then h: X → Y is Riesz* homomorphism ⇔ h is the restriction of a Riesz homomorphism from X^ρ to Y^ρ.

Theorem (Fremlin, 1972)

Let *E* and *F* be Archimedean Riesz spaces. Then there is an Archimedean Riesz space *G* and a Riesz bimorphism $\varphi \colon E \times F \to G$ such that

- (i) whenever H is an Archimedean Riesz space and $\psi: E \times F \to H$ is a Riesz bimorphism, there is a unique Riesz homomorphism $T: G \to H$ such that $T\varphi = \psi$;
- (ii) φ induces an embedding $\hat{\varphi} \colon E \otimes F \to G$;
- (iii) (ru-D) $\hat{\varphi}[E \otimes F]$ is dense in G in the sense that for every $w \in G$, there exist $x_0 \in E$ and $y_0 \in F$ such that for every $\epsilon > 0$, there is an element $v \in \hat{\varphi}[E \otimes F]$ such that $|w - v| \le \epsilon \hat{\varphi}(x_0 \otimes y_0)$;

(iv) if w > 0 in G, then there exist $x \in E^+$ and $y \in F^+$ such that $0 < \hat{\varphi}(x \otimes y) \le w$.

This unique Archimedean Riesz space G is called the Fremlin tensor product of E and F and is denoted by $E \otimes F$.

Gaans, Kalauch, 2010

Theorem

Let E and F be Archimedean Riesz spaces, let $E\bar{\otimes}F$ be the Fremlin tensor product of E and F, and let $E\otimes F$ be the linear subspace generated by all $x\otimes y, x\in E, y\in F$, endowed with the induced order. Then $E\otimes F$ is a pre-Riesz space and $E\bar{\otimes}F$ is its Riesz completion. Moreover, the inclusion map $\hat{\varphi}: E\otimes F \to E\bar{\otimes}F$ is a Riesz* homomorphism.

14 / 22

Construction of the cone in the tensor product of directed Archimedean POVS

Archimedean tensor cone(Grobler, Labuschagne, 1988)

A cone K in $X \otimes Y$ is called an Archimedean tensor cone if $K_T \subseteq K$ and the following universal mapping property is satisfied: For every directed Archimedean POVS (S, K_S) and every positive bilinear map $\sigma: X \times Y \longrightarrow S$ the induced linear map $\sigma^*: (X \otimes Y, K) \longrightarrow (S, K_S)$ is positive.

Lemma (Gaans, Kalauch)

Let X, Y, U and V be vector spaces and let $\rho_X : X \longrightarrow U$ and $\rho_Y : Y \longrightarrow V$ be linear injections. Let $\rho(x, y) := \rho_X(x) \otimes \rho_Y(y), x \in X, y \in Y$. Then the unique linear map $\rho^* : X \otimes Y \longrightarrow U \otimes V$ satisfying $\rho^*(x \otimes y) = \rho(x, y)$ for all $x \in X$ and $y \in Y$ is injective.

▲ 同 ▶ → 三 ▶

Construction of the cone in the tensor product of directed Archimedean POVS

Let (X^{ρ}, ρ_X) and (Y^{ρ}, ρ_Y) be the Riesz completions of X and Y. By the theorem of Fremlin, there exists a Riesz bimorphism

$$\phi_{\mathsf{F}}: X^{\rho} \times Y^{\rho} \longrightarrow X^{\rho} \bar{\otimes} Y^{\rho}$$

and there is a linear injection

$$h_F: X^{\rho} \otimes Y^{\rho} \longrightarrow X^{\rho} \bar{\otimes} Y^{\rho}$$

such that $h_F(u \otimes v) = \phi_F(u, v)$ for all $u \in X^{\rho}$ and $v \in Y^{\rho}$. Define

$$\rho: X \times Y \longrightarrow X^{\rho} \otimes Y^{\rho}$$

$$\rho(x,y) := \rho_X(x) \otimes \rho_Y(y), \ x \in X, y \in Y$$

Construction of the cone in the tensor product of directed Archimedean POVS

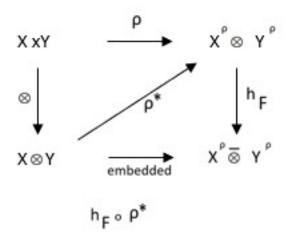
 ρ is bilinear, it induces a unique linear map

$$\rho^*: X \otimes Y \longrightarrow X^{\rho} \otimes Y^{\rho}$$

such that $\rho(x, y) = \rho^*(x \otimes y)$. By the previous lemma, ρ^* is injective, so $X \otimes Y$ is embedded into $X^{\rho} \otimes Y^{\rho}$ by the injective linear map $h_F \circ \rho^*$. So the order in $X^{\rho} \otimes Y^{\rho}$ induces an order on $X \otimes Y$.

$$\mathcal{K}_{F} := \ \{w \in X \otimes Y : \ h_{F}(
ho^{*}(w)) \in (X^{
ho} ar{\otimes} Y^{
ho})^{+}\}$$

Construction of the Archimedean cone



relative uniform topology

A sequence $(s_n)_n$ in a directed POVS *S* is said to converge relatively uniformly to an $s \in S$, denoted by $s_n \xrightarrow{(ru)} s$, if there exist an $a \in K_S$ and a sequence $(\lambda_n)_n$ in \mathbf{R}^+ such that $\lambda_n \longrightarrow 0$ as $n \longrightarrow \infty$ and $-\lambda_n a \leq s_n - s \leq \lambda_n a$ for all *n*.

Lemma (Gaans, Kalauch)

- K_F is a cone in $X \otimes Y$, $K_T \subseteq K_F$, and $(X \otimes Y, K_F)$ is Archimedean.
- K_F is ru-closed in $(X \otimes Y, K_T)$.

Theorem (Gaans, Kalauch)

For a cone K in $X \otimes Y$ following are equivalent:

- K is the Archimedean tensor cone
- ② Let (S, K_S) be a directed POVS, ϕ : $X \otimes Y \longrightarrow S$ be a linear map such that $\phi(w) \in K_S$ for all $w \in K_T$. Then $\phi(w) \in K_S$ for all $w \in K$
- K is the smallest Archimedean cone in $X \otimes Y$ with $K_T \subseteq K$ • $K = \bar{K_T}$, where $\bar{K_T}$ is the ru-closure of K_T in $(X \otimes Y, K_T)$

References

- Kalauch, A., van Gaans, O.: Pre-Riesz Spaces. Walter de Gruyter GmbH, Berlin/Boston (2019)
- Kalauch, A., van Gaans, O.: Tensor products of Archimedean partially ordered vector spaces. Positivity 4(14), 705–714 (2010)
- van Haandel, M.: Completions in Riesz space theory. Proefschrift (PhD thesis), Universiteit Nijmegen, The Netherlands (1993)
- Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, New York (2006)
- Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland Publishing Company, Amsterdam (1971)
- Fremlin D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94, 777–798 (1972)
- Grobler J.J., Labuschagne C.C.A.: The tensor product of Archimedean ordered vector spaces. Math. Proc. Camb. Philos. Soc. 104, 331–345 (1988)

THANK YOU ...

イロト イヨト イヨト イヨト