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Purpose

Part 1, presented by M. Masmoudi, dealt with the introduction

to a measure preserving transformation (including the de�nition

of a Lebesgue space), and concluded with mixing of a measure

preserving transformation. The purpose of Part 2 is to

introduce the concept of the entropy of a measure preserving

transformation.
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Measurable Partition

Let (X,B, µ) be a measure space, then P is a countable

measurable partition of B, or, simply, a partition of B, whenever
P is a countable collection of non-empty, pairwise disjoint

members of B which with union X. Furthermore, if P is a

subpartition of some partition of B, P1, then write P1 ≤ P,
where P ≥ P1 if and only if P1 ≤ P.
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Product and Intersection Measurable Partitions

Let (X,B, µ) be a measure space and let {Pa | a ∈ A} be a

family of partitions of B, then the product, denoted
∨

a∈A Pa, is

the partition P of B such that Pa ≤ P for all a ∈ A and if

Pa ≤ P ′ for all a ∈ A, for some partition P ′, then P ≤ P ′.

If A
is �nite, say, A = {1, 2, ..., n}, then the product may be denoted

n∨
i=1

Pi = P1P2...Pn.

The intersection is denoted
∧

a∈A Pa, where it is the partition P
such that P ≤ Pa for all a ∈ A and if P ′ is a partition of B such

that P ′ ≤ Pa for all a ∈ A, then P ′ ≤ P.

The symbol Pn ↗ P indicates that P1 ≤ P2 ≤ ... and
P =

∨∞
n=1 Pn. The symbol Pn ↘ P indicates that P1 ≥ P2 ≥ ...

and
∧∞

n=1 Pn = P.
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Measure Preserving Transformation

Let (X,B, µ) be a probability space and let T : X → X such

that T−1 (B) ⊆ B and µ
(
T−1 (A)

)
= µ (A) for each A ∈ B, then

T is called a measure preserving transformation and (X,B, µ, T )
is called a measure preserving system.

Henceforth, it is assumed

that all probability spaces are Lebesgue spaces and,

consequently, all measure preserving systems are assumed to be

a measure preserving transformation de�ned on a Lebesgue

space with measure 1.
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Entropy I

Let (X,B, µ, T ) be a measure preserving system, let P be a

partition of B and let C1, C2, ... be members of P with strictly

positive measure, then the entropy of P is denoted H(P), where

H(P) :=

{
−
∑

n µ (Cn) log2 (µ (Cn)) if µ (X \
⋃

nCn) = 0,

∞ if µ (X \
⋃

nCn) > 0,

where 0 log2 (0) := 0.
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Entropy II

If m (x;P) denotes the measure of the element of P which

contains the point x ∈ X and, with the convention

log2 (0) := −∞, then

H(P) = −
∫

log2 (m (x;P)) dµ



Introduction Entropy Entropy Conditional Entropy Entropy of a Measure Preserving Transformation

Table of Contents

1 Introduction

Purpose

2 Entropy

Measurable Partition

Measure Preserving Transformation

3 Entropy

De�nition

Properties of Entropy

4 Conditional Entropy

Opening Observation

Mean Conditional Entropy

Properties of the Mean Conditional Entropy

5 Entropy of a Measure Preserving Transformation



Introduction Entropy Entropy Conditional Entropy Entropy of a Measure Preserving Transformation

Properties of Entropy I

Let (X,B, µ, T ) be a measure preserving system and let P be a

partition of B, then

1 H(P) ≥ 0, where H(P) = 0 if and only if P = {X}.
2 If Q is a partition of B and if P ≤ Q, then H(P) ≤ H(Q).

Furthermore, if H(P) = H (Q) < ∞, then P = Q.

3 If P1,P2, ... are partitions of B and Pn ↗ P (resp.,

Pn ↘ P), then H(Pn) 1 H(P) (resp., H(Pn) ↘ H(P)).
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Properties of Entropy II

1 If P has n sets, then H(P) ≤ log2 (n). Furthermore,

H(P) = log2 (n) if and only if µ (P ) =
1

n
for each P ∈ P.

2 If Q is a partition of B, then H(PQ) ≤ H(P) + H (Q).
Furthermore, if H(P) ,H(Q) < ∞, then H(P) = H (Q) if
and only if P and Q are independent (that is,

µ (A ∩B) = µ (A)µ (B) for each A ∈ P and for each

B ∈ Q).

3 If P1, ... is a sequence (�nite or in�nite), of partitions of B,

then H

(∨
n

Pn

)
≤
∑
n

H(Pn).
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Opening Observation

If (X,B, µ, T ) is a measure preserving system and if P and Q
are partitions of B, then almost every partition PB, for

B ∈ X/Q, has a well-de�ned entropy, H(PB).

Notice that H(PB) is a positive, measurable function of the

factor space X/Q and it is called the conditional entropy of P
with respect to Q.

1As per the terminology of Riesz spaces, positive includes zero.
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Mean Conditional Entropy I

Let (X,B, µ, T ) be a measure preserving system and let P and

Q be partitions of B, then the mean conditional entropy of P
with respect to Q is denoted H(P/Q), where

H(P/Q) :=

∫
X/Q

H(PB) dµQ,

where µQ is the measure de�ned by µQ = µ ◦ ρ, where
ρ : X → Q, taking x in X to the member of Q in which it is

contained.
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Mean Conditional Entropy II

An equivalent de�nition can be sated by letting B (x) being the

member of Q which contains x ∈ X and by letting m (x;P/Q)
denote the measure (in B (x)), of the member of the partition

PB(x) containing x, then

H(P | Q) = −
∫

log2 (m (x;P/Q)) dµ.

Notice that by using this de�nition, the domain of integration is

X, which is an advantage over the previous de�nition which has

its domain of integration being X/Q.
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Properties of the Mean Conditional Entropy I

Let (X,B, µ, T ) be a measure preserving system and let P be a

partition of B.
1 H(P/ {X}) = H (P ).

2 If Q and R are partitions of B and if Q ≤ R, then
H(PQ/R) = H (P/R).

3 If Q is a partition of B, then H(P/Q) ≥ 0, where
H(P/Q) = 0 if and only if P ≤ Q.

4 If Q and R are partitions of B, then
H(PQ/R) ≤ H(P/R) + H (Q/R). Furthermore, if

H(P/R) ,H(Q/R) < ∞, then

H(PQ/R) = H (P/R) + H (Q/R) if and only if P and Q
are independent with respect to R.

5 If (Pn) is a sequence of partitions of B with Pn ↗ P (resp.,

Pn ↘ P ), and if Q is a partition of B, then
H(Pn/Q) ↗ H(P/Q) (resp., H(Pn/Q) ↘ H(P/Q)).
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Properties of the Mean Conditional Entropy II

If Q and R are partitions of B, then

H(PQ/R) = H (P/R) + H (Q/PR) .
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Opening Statement

In the preceding section, a measure preserving system was used,

but only a Lebesgue space (with probability measure), was

required. This was no mistake: this was used to enforce the idea

that we want to build something which can be applied to a

measure preserving transformation on a Lebesgue probability

space.
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Entropy of a Measure Preserving Transformation

Let (X,B, µ, T ) be a measure preserving system and let P be a

partition of B, then the entropy of T with respect to P is

denoted h (T, P ), where

h (T, P ) = H
(
P/T−1P−) ,

where P− :=
∨∞

n=0 T
−nP .

Theorem

Let (X,B, µ, T ) be a measure preserving system and let P and Q
be partitions of B. If P ≤ Q and if H

(
Q/T−1P−) < ∞, then

1

n
H

(
n−1∨
k=0

T−kP/T−nQ−

)
→ h (T, P ) as n → ∞.
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