Introduction Entropy Entropy Conditional Entropy Entropy of a Measure Preserving Transformation 000

Lectures on the Entropy Theory of Measure-Preserving Transformations Part 2

Jonathan Homann Based on V.A. Rokhlin's Lectures

North West University

 $1 \ {\rm December} \ 2022$

Outline I

- Introduction
 Purpose
- 2 Entropy
 - Measurable Partition
 - Measure Preserving Transformation
- ③ Entropy
 - Definition
 - Properties of Entropy
- 4 Conditional Entropy
 - Opening Observation
 - Mean Conditional Entropy
 - Properties of the Mean Conditional Entropy
- 5 Entropy of a Measure Preserving Transformation

Table of Contents

IntroductionPurpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy

Purpose

Part 1, presented by M. Masmoudi, dealt with the introduction to a measure preserving transformation (including the definition of a Lebesgue space), and concluded with mixing of a measure preserving transformation. The purpose of Part 2 is to introduce the concept of the entropy of a measure preserving transformation. Introduction Conditional Entropy Entropy of a Measure Preserving Transformation

Table of Contents

1) Introduction

Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy

Let (X, \mathcal{B}, μ) be a measure space, then \mathcal{P} is a countable measurable partition of \mathcal{B} , or, simply, a partition of \mathcal{B} , whenever \mathcal{P} is a countable collection of non-empty, pairwise disjoint members of \mathcal{B} which with union X. Furthermore, if \mathcal{P} is a subpartition of some partition of $\mathcal{B}, \mathcal{P}_1$, then write $\mathcal{P}_1 \leq \mathcal{P}$, where $\mathcal{P} \geq \mathcal{P}_1$ if and only if $\mathcal{P}_1 \leq \mathcal{P}$.

Introduction Entropy of a Measure Preserving Transformation

Product and Intersection Measurable Partitions

Let (X, \mathcal{B}, μ) be a measure space and let $\{\mathcal{P}_a \mid a \in A\}$ be a family of partitions of \mathcal{B} , then the product, denoted $\bigvee_{a \in A} \mathcal{P}_a$, is the partition \mathcal{P} of \mathcal{B} such that $\mathcal{P}_a \leq \mathcal{P}$ for all $a \in A$ and if $\mathcal{P}_a \leq \mathcal{P}'$ for all $a \in A$, for some partition \mathcal{P}' , then $\mathcal{P} \leq \mathcal{P}'$.

Introduction Entropy Conditional Entropy Entropy of a Measure Preserving Transformation

Product and Intersection Measurable Partitions

Let (X, \mathcal{B}, μ) be a measure space and let $\{\mathcal{P}_a \mid a \in A\}$ be a family of partitions of \mathcal{B} , then the product, denoted $\bigvee_{a \in A} \mathcal{P}_a$, is the partition \mathcal{P} of \mathcal{B} such that $\mathcal{P}_a \leq \mathcal{P}$ for all $a \in A$ and if $\mathcal{P}_a \leq \mathcal{P}'$ for all $a \in A$, for some partition \mathcal{P}' , then $\mathcal{P} \leq \mathcal{P}'$. If Ais finite, say, $A = \{1, 2, ..., n\}$, then the product may be denoted

$$\bigvee_{i=1}^{n} \mathcal{P}_{i} = \mathcal{P}_{1}\mathcal{P}_{2}...\mathcal{P}_{n}$$

Introduction Entropy Conditional Entropy Entropy of a Measure Preserving Transformation

Product and Intersection Measurable Partitions

Let (X, \mathcal{B}, μ) be a measure space and let $\{\mathcal{P}_a \mid a \in A\}$ be a family of partitions of \mathcal{B} , then the product, denoted $\bigvee_{a \in A} \mathcal{P}_a$, is the partition \mathcal{P} of \mathcal{B} such that $\mathcal{P}_a \leq \mathcal{P}$ for all $a \in A$ and if $\mathcal{P}_a \leq \mathcal{P}'$ for all $a \in A$, for some partition \mathcal{P}' , then $\mathcal{P} \leq \mathcal{P}'$. If Ais finite, say, $A = \{1, 2, ..., n\}$, then the product may be denoted

$$\bigvee_{i=1}^{n} \mathcal{P}_{i} = \mathcal{P}_{1}\mathcal{P}_{2}...\mathcal{P}_{n}$$

The intersection is denoted $\bigwedge_{a \in A} \mathcal{P}_a$, where it is the partition \mathcal{P} such that $\mathcal{P} \leq \mathcal{P}_a$ for all $a \in A$ and if \mathcal{P}' is a partition of \mathcal{B} such that $\mathcal{P}' \leq \mathcal{P}_a$ for all $a \in A$, then $\mathcal{P}' \leq \mathcal{P}$.

Introduction Ocean Conditional Entropy Entropy of a Measure Preserving Transformation

Product and Intersection Measurable Partitions

Let (X, \mathcal{B}, μ) be a measure space and let $\{\mathcal{P}_a \mid a \in A\}$ be a family of partitions of \mathcal{B} , then the product, denoted $\bigvee_{a \in A} \mathcal{P}_a$, is the partition \mathcal{P} of \mathcal{B} such that $\mathcal{P}_a \leq \mathcal{P}$ for all $a \in A$ and if $\mathcal{P}_a \leq \mathcal{P}'$ for all $a \in A$, for some partition \mathcal{P}' , then $\mathcal{P} \leq \mathcal{P}'$. If Ais finite, say, $A = \{1, 2, ..., n\}$, then the product may be denoted

$$\bigvee_{i=1}^{n} \mathcal{P}_{i} = \mathcal{P}_{1}\mathcal{P}_{2}...\mathcal{P}_{n}$$

The intersection is denoted $\bigwedge_{a \in A} \mathcal{P}_a$, where it is the partition \mathcal{P} such that $\mathcal{P} \leq \mathcal{P}_a$ for all $a \in A$ and if \mathcal{P}' is a partition of \mathcal{B} such that $\mathcal{P}' \leq \mathcal{P}_a$ for all $a \in A$, then $\mathcal{P}' \leq \mathcal{P}$.

The symbol
$$\mathcal{P}_n \nearrow \mathcal{P}$$
 indicates that $\mathcal{P}_1 \le \mathcal{P}_2 \le ...$ and $\mathcal{P} = \bigvee_{n=1}^{\infty} \mathcal{P}_n$.

Introduction Entropy Ocodo Conditional Entropy Entropy of a Measure Preserving Transformation

Product and Intersection Measurable Partitions

Let (X, \mathcal{B}, μ) be a measure space and let $\{\mathcal{P}_a \mid a \in A\}$ be a family of partitions of \mathcal{B} , then the product, denoted $\bigvee_{a \in A} \mathcal{P}_a$, is the partition \mathcal{P} of \mathcal{B} such that $\mathcal{P}_a \leq \mathcal{P}$ for all $a \in A$ and if $\mathcal{P}_a \leq \mathcal{P}'$ for all $a \in A$, for some partition \mathcal{P}' , then $\mathcal{P} \leq \mathcal{P}'$. If Ais finite, say, $A = \{1, 2, ..., n\}$, then the product may be denoted

$$\bigvee_{i=1}^{n} \mathcal{P}_{i} = \mathcal{P}_{1}\mathcal{P}_{2}...\mathcal{P}_{n}$$

The intersection is denoted $\bigwedge_{a \in A} \mathcal{P}_a$, where it is the partition \mathcal{P} such that $\mathcal{P} \leq \mathcal{P}_a$ for all $a \in A$ and if \mathcal{P}' is a partition of \mathcal{B} such that $\mathcal{P}' \leq \mathcal{P}_a$ for all $a \in A$, then $\mathcal{P}' \leq \mathcal{P}$.

The symbol $\mathcal{P}_n \nearrow \mathcal{P}$ indicates that $\mathcal{P}_1 \leq \mathcal{P}_2 \leq ...$ and $\mathcal{P} = \bigvee_{n=1}^{\infty} \mathcal{P}_n$. The symbol $\mathcal{P}_n \searrow \mathcal{P}$ indicates that $\mathcal{P}_1 \geq \mathcal{P}_2 \geq ...$ and $\bigwedge_{n=1}^{\infty} \mathcal{P}_n = \mathcal{P}$.

Table of Contents

Introduction

• Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy

Measure Preserving Transformation

0000

Let (X, \mathcal{B}, μ) be a probability space and let $T: X \to X$ such that $T^{-1}(\mathcal{B}) \subseteq \mathcal{B}$ and $\mu(T^{-1}(A)) = \mu(A)$ for each $A \in \mathcal{B}$, then T is called a measure preserving transformation and (X, \mathcal{B}, μ, T) is called a measure preserving system.

Measure Preserving Transformation

Let (X, \mathcal{B}, μ) be a probability space and let $T: X \to X$ such that $T^{-1}(\mathcal{B}) \subseteq \mathcal{B}$ and $\mu(T^{-1}(A)) = \mu(A)$ for each $A \in \mathcal{B}$, then T is called a measure preserving transformation and (X, \mathcal{B}, μ, T) is called a measure preserving system. Henceforth, it is assumed that all probability spaces are Lebesgue spaces and, consequently, all measure preserving systems are assumed to be a measure preserving transformation defined on a Lebesgue space with measure 1.

ntroduction Entropy <mark>Entropy</mark> Conditional Entropy Entropy of a Measure Preserving Transformation

Table of Contents

Introduction

• Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation
- 3 Entropy
 - Definition
 - Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy

Let (X, \mathcal{B}, μ, T) be a measure preserving system, let \mathcal{P} be a partition of \mathcal{B} and let $C_1, C_2, ...$ be members of \mathcal{P} with strictly positive measure, then the entropy of \mathcal{P} is denoted $\mathrm{H}(\mathcal{P})$, where

$$H(\mathcal{P}) := \begin{cases} -\sum_{n} \mu(C_{n}) \log_{2} \left(\mu(C_{n}) \right) & \text{if } \mu(X \setminus \bigcup_{n} C_{n}) = 0, \\ \infty & \text{if } \mu(X \setminus \bigcup_{n} C_{n}) > 0, \end{cases}$$

where $0 \log_2(0) := 0$.

If $m(x; \mathcal{P})$ denotes the measure of the element of \mathcal{P} which contains the point $x \in X$ and, with the convention $\log_2(0) := -\infty$, then

$$H(\mathcal{P}) = -\int \log_2 \left(m\left(x; \mathcal{P}\right)\right) \, \mathrm{d}\mu$$

Introduction Entropy Entropy Conditional Entropy Entropy of a Measure Preserving Transformation

Table of Contents

Introduction

• Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy

Introduction Entropy Entropy Conditional Entropy Entropy of a Measure Preserving Transformation Properties of Entropy I

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let \mathcal{P} be a partition of \mathcal{B} , then

Properties of Entropy I

000000

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let \mathcal{P} be a partition of \mathcal{B} , then

Conditional Entropy Entropy of a Measure Preserving Transformation

• $H(\mathcal{P}) \ge 0$, where $H(\mathcal{P}) = 0$ if and only if $\mathcal{P} = \{X\}$.

Properties of Entropy I

000000

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let \mathcal{P} be a partition of \mathcal{B} , then

- $H(\mathcal{P}) \ge 0$, where $H(\mathcal{P}) = 0$ if and only if $\mathcal{P} = \{X\}$.
- If Q is a partition of B and if $\mathcal{P} \leq Q$, then H (\mathcal{P}) ≤ H (Q). Furthermore, if H (\mathcal{P}) = H (Q) < ∞, then $\mathcal{P} = Q$.

Properties of Entropy I

000000

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let \mathcal{P} be a partition of \mathcal{B} , then

- $H(\mathcal{P}) \ge 0$, where $H(\mathcal{P}) = 0$ if and only if $\mathcal{P} = \{X\}$.
- If Q is a partition of B and if $\mathcal{P} \leq Q$, then H (\mathcal{P}) ≤ H (Q). Furthermore, if H (\mathcal{P}) = H (Q) < ∞, then $\mathcal{P} = Q$.
- ◎ If $\mathcal{P}_1, \mathcal{P}_2, ...$ are partitions of \mathcal{B} and $\mathcal{P}_n \nearrow \mathcal{P}$ (resp., $\mathcal{P}_n \searrow \mathcal{P}$), then H (\mathcal{P}_n) \uparrow H (\mathcal{P}) (resp., H (\mathcal{P}_n) \searrow H (\mathcal{P})).

Properties of Entropy II

00000

• If \mathcal{P} has n sets, then $\mathrm{H}(\mathcal{P}) \leq \log_2(n)$. Furthermore, $\mathrm{H}(\mathcal{P}) = \log_2(n)$ if and only if $\mu(\mathcal{P}) = \frac{1}{n}$ for each $\mathcal{P} \in \mathcal{P}$.

Properties of Entropy II

00000

• If \mathcal{P} has n sets, then $\mathrm{H}(\mathcal{P}) \leq \log_2(n)$. Furthermore, $\mathrm{H}(\mathcal{P}) = \log_2(n)$ if and only if $\mu(\mathcal{P}) = \frac{1}{n}$ for each $\mathcal{P} \in \mathcal{P}$.

Conditional Entropy

Entropy of a Measure Preserving Transformation

If Q is a partition of B, then H (PQ) ≤ H (P) + H (Q). Furthermore, if H (P), H (Q) < ∞, then H (P) = H (Q) if and only if P and Q are independent (that is, $\mu(A \cap B) = \mu(A) \mu(B)$ for each A ∈ P and for each B ∈ Q).

Properties of Entropy II

00000

• If \mathcal{P} has n sets, then $\mathrm{H}(\mathcal{P}) \leq \log_2(n)$. Furthermore, $\mathrm{H}(\mathcal{P}) = \log_2(n)$ if and only if $\mu(\mathcal{P}) = \frac{1}{n}$ for each $\mathcal{P} \in \mathcal{P}$.

Entropy of a Measure Preserving Transformation

Conditional Entropy

- If Q is a partition of B, then H (PQ) ≤ H (P) + H (Q). Furthermore, if H (P), H (Q) < ∞, then H (P) = H (Q) if and only if P and Q are independent (that is, $\mu(A \cap B) = \mu(A) \mu(B)$ for each $A \in P$ and for each $B \in Q$).
- If $P_1, ...$ is a sequence (finite or infinite), of partitions of \mathcal{B} , then $\operatorname{H}\left(\bigvee_n P_n\right) \leq \sum_n \operatorname{H}(P_n)$.

Entropy of a Measure Preserving Transformation

Table of Contents

Introduction

• Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy

If (X, \mathcal{B}, μ, T) is a measure preserving system and if P and Q are partitions of \mathcal{B} , then almost every partition P_B , for $B \in X/Q$, has a well-defined entropy, $H(P_B)$.

0000000

¹As per the terminology of Riesz spaces, positive includes zero.

If (X, \mathcal{B}, μ, T) is a measure preserving system and if P and Q are partitions of \mathcal{B} , then almost every partition P_B , for $B \in X/Q$, has a well-defined entropy, $H(P_B)$.

00000

Entropy of a Measure Preserving Transformation

Notice that $H(P_B)$ is a positive, measurable function of the factor space X/Q and it is called the conditional entropy of P with respect to Q.

¹As per the terminology of Riesz spaces, positive includes zero.

Entropy of a Measure Preserving Transformation 000

Table of Contents

Introduction

• Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy
- **(5)** Entropy of a Measure Preserving Transformation

Mean Conditional Entropy I

00000000

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P and Q be partitions of \mathcal{B} , then the mean conditional entropy of P with respect to Q is denoted H(P/Q), where

Entropy of a Measure Preserving Transformation

$$\mathrm{H}\left(P/Q\right) := \int_{X/Q} \mathrm{H}\left(P_B\right) \,\mathrm{d}\mu_Q,$$

where μ_Q is the measure defined by $\mu_Q = \mu \circ \rho$, where $\rho: X \to Q$, taking x in X to the member of Q in which it is contained.

An equivalent definition can be sated by letting B(x) being the member of Q which contains $x \in X$ and by letting m(x; P/Q) denote the measure (in B(x)), of the member of the partition $P_{B(x)}$ containing x, then

Entropy of a Measure Preserving Transformation

$$\mathrm{H}\left(P \mid Q\right) = -\int \log_2\left(m\left(x; P/Q\right)\right) \,\mathrm{d}\mu.$$

Notice that by using this definition, the domain of integration is X, which is an advantage over the previous definition which has its domain of integration being X/Q.

Entropy of a Measure Preserving Transformation 000

Table of Contents

Introduction

• Purpose

2 Entropy

- Measurable Partition
- Measure Preserving Transformation

3 Entropy

- Definition
- Properties of Entropy

4 Conditional Entropy

- Opening Observation
- Mean Conditional Entropy
- Properties of the Mean Conditional Entropy
- 5 Entropy of a Measure Preserving Transformation

000000000

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} .

1
$$\operatorname{H}(P/\{X\}) = \operatorname{H}(P).$$

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} .

- **1** $\operatorname{H}(P/\{X\}) = \operatorname{H}(P).$
- **2** If Q and R are partitions of \mathcal{B} and if $Q \leq R$, then $\operatorname{H}(PQ/R) = \operatorname{H}(P/R)$.

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} .

- **1** $\operatorname{H}(P/\{X\}) = \operatorname{H}(P).$
- **2** If Q and R are partitions of \mathcal{B} and if $Q \leq R$, then $\operatorname{H}(PQ/R) = \operatorname{H}(P/R)$.
- If Q is a partition of \mathcal{B} , then $\operatorname{H}(P/Q) \ge 0$, where $\operatorname{H}(P/Q) = 0$ if and only if $P \le Q$.

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} .

- $H(P/{X}) = H(P).$
- **2** If Q and R are partitions of \mathcal{B} and if $Q \leq R$, then $\operatorname{H}(PQ/R) = \operatorname{H}(P/R)$.
- If Q is a partition of \mathcal{B} , then $\mathrm{H}(P/Q) \ge 0$, where $\mathrm{H}(P/Q) = 0$ if and only if $P \le Q$.
- If Q and R are partitions of B, then H (PQ/R) ≤ H (P/R) + H (Q/R). Furthermore, if H (P/R), H (Q/R) < ∞, then H (PQ/R) = H (P/R) + H (Q/R) if and only if P and Q are independent with respect to R.

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} .

- $H(P/{X}) = H(P).$
- **2** If Q and R are partitions of \mathcal{B} and if $Q \leq R$, then $\operatorname{H}(PQ/R) = \operatorname{H}(P/R)$.
- If Q is a partition of \mathcal{B} , then $\operatorname{H}(P/Q) \ge 0$, where $\operatorname{H}(P/Q) = 0$ if and only if $P \le Q$.
- If Q and R are partitions of B, then H (PQ/R) ≤ H (P/R) + H (Q/R). Furthermore, if H (P/R), H (Q/R) < ∞, then H (PQ/R) = H (P/R) + H (Q/R) if and only if P and Q are independent with respect to R.
- If (P_n) is a sequence of partitions of \mathcal{B} with $P_n \nearrow P$ (resp., $P_n \searrow P$), and if Q is a partition of \mathcal{B} , then $\operatorname{H}(P_n/Q) \nearrow \operatorname{H}(P/Q)$ (resp., $\operatorname{H}(P_n/Q) \searrow \operatorname{H}(P/Q)$).

00000000

If Q and R are partitions of \mathcal{B} , then

 $\mathbf{H}\left(PQ/R\right)=\mathbf{H}\left(P/R\right)+\mathbf{H}\left(Q/PR\right).$

Opening Statement

In the preceding section, a measure preserving system was used, but only a Lebesgue space (with probability measure), was required. This was no mistake: this was used to enforce the idea that we want to build something which can be applied to a measure preserving transformation on a Lebesgue probability space.

000

Entropy of a Measure Preserving Transformation

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} , then the entropy of T with respect to P is denoted h(T, P), where

000

$$h(T,P) = \mathrm{H}\left(P/T^{-1}P^{-}\right),\,$$

where $P^- := \bigvee_{n=0}^{\infty} T^{-n} P$.

Entropy of a Measure Preserving Transformation

Conditional Entropy

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P be a partition of \mathcal{B} , then the entropy of T with respect to P is denoted h(T, P), where

000

$$h(T,P) = \mathrm{H}\left(P/T^{-1}P^{-}\right),\,$$

where $P^- := \bigvee_{n=0}^{\infty} T^{-n} P$.

Theorem

Let (X, \mathcal{B}, μ, T) be a measure preserving system and let P and Q be partitions of \mathcal{B} . If $P \leq Q$ and if $\operatorname{H}(Q/T^{-1}P^{-}) < \infty$, then

$$\frac{1}{n} \mathbf{H} \left(\bigvee_{k=0}^{n-1} T^{-k} P / T^{-n} Q^{-} \right) \to h \left(T, P \right) \quad as \ n \to \infty$$

Introduction Entropy Entropy Conditional Entropy Entropy of a Measure Preserving Transformation 00000 0000000 0000000 0000000

References

 ROKHLIN, V.A., Lectures on the Entropy Theory of Measure-Preserving Transformations, Russ. Math. Surv. 22 1, 1967.