> Marwa Masmoudi

Some preliminarie on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endo morphisms

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

Marwa Masmoudi

November 2022.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQで 1/18

Outline

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms 1 Some preliminaries on measure theory

2 Ergodic endomorphism

3 Periodic endomorphism

4 Kakutani-Rokhlin Lemma

5 Mixing endomorphisms

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms A map from a measure space to another is said to be:

- homomorphism: if the inverse image of a measurable set is measurable and has the same measure.
- isomorphism: if it is a one-to-one homomorphism and the inverse map is also a homomorphism.

If the spaces coincide

- homomorhism = endomorphism .
- isomorphism = automorphism .

Two homomorphisms will be identified mod 0 if they differ on their domains and ranges on sets of measure zero.

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

- A basis of a space M: a countable system {B_a}_{a∈A} of measurable sets satisfying:
 - $\forall X$ measurable set, $\exists Y$ a set in the Borel set generated by $\{B_a\}_{a \in A}$ such that $X \subset Y$ and $\mu(Y X) = 0$.
 - $\forall x, y \in M, \exists a \in A \text{ such that either } x \in B_a, y \notin B_a, \text{ or } x \notin B_a, y \in B_a.$
- seperable space: space with a complete normalized measure.
- Lebesgue space: seperable space complete mod 0 with respect to one basis.

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Let M be a Lebesgue space.

- Partition of *M*: Collection of non-empty disjoint sets covering *M*.
- ξ-sets: subsets of M that are sums of elements of a partition ξ.
- basis of ξ: a countable system {B_a}_{a∈A} of measurable ξ-sets satisfying for any C, C' ∈ ξ, there exists a ∈ A such that C ⊂ B_a, C' ⊄ B_a or C ⊄ B_a, C' ⊂ B_a.

• partition + basis = measurable partition

Isometric operators

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms Let H be a separable unitary space.

• Isometric operator in *H*: an isomorphism transformation of *H* onto a subspace.

- An isometric operator U acting on H is said to be
 - unitary if UH = H.
 - semi-unitary if UH is a proper subspace of H.
- A subspace G of H is said to be
 - invariant under U if $UG \subset G$.
 - completely invariant under U if UG = G.

Adjoint operator

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endo morphisms Every endomorphism T of a space M has an adjoint operator U_T acting in $L^2(M)$ and defined by

$$U_T f(x) = f(Tx), f \in L^2(M), x \in M.$$

• U_T is an isometric operator.

$$||U_T f||_2^2 = \int |U_T f|^2 d\mu = \int |f(Tx)|^2 d\mu = ||f||_2^2.$$

• If
$$T$$
 is an automorphism, U_T is unitary.

• otherwise U_T is semi-unitary.

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endo morphisms A measurable partition ξ of M is said to be

- invariant under T if $T^{-1}\xi \leq \xi$.
- completely invariant under T if $T^{-1}\xi = \xi$.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 - のへで 8/18

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms A measurable partition ξ of M is said to be

- invariant under T if $T^{-1}\xi \leq \xi$.
- completely invariant under T if $T^{-1}\xi = \xi$.

Let

$$\xi^- = \bigvee_{k=0}^{\infty} T^{-k} \xi.$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 - のへで 8/18

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms A measurable partition ξ of M is said to be

- invariant under T if $T^{-1}\xi \leq \xi$.
- completely invariant under T if $T^{-1}\xi = \xi$.

Let

$$\xi^- = \bigvee_{k=0}^{\infty} T^{-k} \xi.$$

• ξ^- is the coarsest invariant measurable partition finer than ξ .

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 - のへで 8/18

•
$$\xi$$
 is invariant $\iff \ \xi = \xi^-.$

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

- A measurable partition ξ of M is said to be
 - invariant under T if $T^{-1}\xi \leq \xi$.
 - completely invariant under T if $T^{-1}\xi = \xi$.

Let

$$\xi^- = \bigvee_{k=0}^{\infty} T^{-k} \xi.$$

• ξ^- is the coarsest invariant measurable partition finer than ξ .

◆□ → ◆□ → ◆ 三 → ▲ ● ◆ ○ × 0 × 0 × 0 × 18

• ξ is invariant $\iff \xi = \xi^-$.

Now, if T is an automorphism,

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

- A measurable partition ξ of M is said to be
 - invariant under T if $T^{-1}\xi \leq \xi$.
 - completely invariant under T if $T^{-1}\xi = \xi$.

Let

$$\xi^- = \bigvee_{k=0}^{\infty} T^{-k} \xi.$$

- ξ^- is the coarsest invariant measurable partition finer than ξ .
- ξ is invariant $\iff \xi = \xi^-$.

Now, if T is an automorphism,

- $\xi_T = \bigvee_{-\infty}^{\infty} T^k \xi$ is the coarsest completely invariant measurable partition finer than ξ .
- ξ is invariant $\iff \xi = \xi_T$.

Ergodicity

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Definition

An endomorphism T is called ergodic if every measurable set A that is invariant under $T(T^{-1}A = A)$ has either measure 0 or 1

Proposition (Equivalent definition)

An endomorphism T is ergodic if and only if every invariant function on $L^2(M)$ is a constant. That is 1 is a simple eigenvalue of U_T

Ergodicity

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Definition

An endomorphism T is called ergodic if every measurable set A that is invariant under $T(T^{-1}A = A)$ has either measure 0 or 1

Proposition (Equivalent definition)

An endomorphism T is ergodic if and only if every invariant function on $L^2(M)$ is a constant. That is 1 is a simple eigenvalue of U_T

 \Rightarrow Ergodicity is a spectral property.

(To be precise on this point, a property of a measure preserving transformation is said to be spectral if whenever $U_T = WU_S W^{-1}$ for an invertible isometry W and a measure preserving transformation S, then S shares also this property.)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endo morphisms If T is not ergodic, then it can be decomposed into ergodic components in the following sense.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 10/18

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms If T is not ergodic, then it can be decomposed into ergodic components in the following sense.

 There exists a finest mod 0 partition ξ fixed under T (measurable + its elements C_i are invariant under T) and T is ergodic in its elements.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 10/18

- T_{C_i} component of T: transformation induced by T in $C_i \in \xi$.
 - $(T_{C_i}$ is an endomorphism of C_i)

Periodicity

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Definition

- An endomorphism T is said to be periodic at a point x ∈ M if ∃ p ∈ ℕ such that T^px = x.
- *T* is said to be aperiodic if the set of points of periodicity has measure zero.
- for p∈ N, A_p = {x ∈ M; T^px = x} : set of points at which T is periodic of period p.
- A_0 : set of points at which T is aperiodic.

Remark

If the measure in M is continuous, then Ergodicity \Rightarrow aperiodicity. The converse is false in general.

Ergodic version

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endo morphisms

Theorem (Eisner book)

Let $(\Omega, \mathcal{F}, \tau)$ be an ergodic measure preserving system, let $A \in \mathcal{F}$ with $\mu(A) > 0$ and $n \in \mathbb{N}$. Then there is a set $B \in \mathcal{F}$ such that $B, \tau B, ..., \tau^{n-1}B$ are pairwise disjoint and

$$\mu(\bigcup_{j=0}^{n-1}\tau^{j}B)\geq 1-n\mu(A).$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 12/18

Ergodic case in anatomic spaces

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms Another version of Kakutani Rokhlin lemma was given in Petersen book requiring the conditions of ergodicity and the anatomicity of the system.

Theorem (Petersen book)

Let $\tau : \Omega \to \Omega$ be an ergodic measure preserving transformation on a nonatomic measure space $(\Omega, \mathcal{F}, \mu)$, n a positive integer and $\epsilon > 0$. Then there is a measurable set $B \in \mathcal{F}$ such that $B, \tau B, ..., \tau^{n-1}B$ are pairwise disjoint and cover Ω up to a set of measure less than ϵ .

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ のQ ↔ 13/18

Aperiodic case

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING

SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminaries on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Proposition

If T is an aperiodic endomorphism, then for any positive ϵ there exists a measurable set A of measure less than ϵ such that a finite number of the sets $T^{-k}A$ cover M.

The hypothesis of ergodicity in Kakutani-Rokhlin Lemma was weakened in Rokhlin paper as follows.

Proposition

If T is an aperiodic automorphism, then for any naturel number n and any positive ϵ , there exists a measurable set $A \subset M$ such that the sets A, TA, ..., $T^{-n}A$ are pairwise disjoint and the complement of their union has measure less than ϵ .

Mixing endomorphisms

LECTURES ON THE ENTROPY THEORY OF MEASURE PRESERVING SYSETEM BY ROKHLIN (PART 1)

> Marwa Masmoudi

Some preliminarie on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Definition

We say that the endomorphism T is mixing on the sets $A_0, ..., A_r$ if, for any sequence of complexes of non negative integers $(k_1^0, ..., k_1^r), (k_2^0, ..., k_2^r), ...$ satisfying $\lim_{n \to \infty} \min_{0 \le i < j \le r} |k_n^j - k_n^i| = \infty$ we have

$$\lim_{n\to\infty}\mu(\bigcap_{i=0}^r T^{-k_n^i}A_i)=\prod_{i=0}^r \mu(A_i).$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ↔ 15/18

> Marwa Masmoudi

Some preliminarie on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms

Definition

We say that the endomorphism T is mixing on the bounded functions $f_0, ..., f_r$ if, for every such subsequence of complexes

$$\lim_{n \to \infty} < \prod_{i=0}^{r} U_T^{k_n^i} f_i, 1 > = \prod_{i=0}^{r} < f_i, 1 > .$$

- Mixing on the sets A₀,..., A_r ⇐⇒ Mixing on the characteristic functions of these sets.
- Mixing of degree r = Mixing on any measurable sets $A_0, ..., A_r =$ Mixing on any bounded measurable functions $f_0, ..., f_r$.

> Marwa Masmoudi

Some preliminarie on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms • Mixing of degree 1 = Mixing.

A transformation T of a probability measure space (X, μ) is said to be mixing if for any measurable sets $A, B \subset X$

$$\lim_{n\to\infty}\mu(T^{-n}A\cap B)=\mu(A)\mu(B).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Mixing \implies ergodicity.
- Mixing is a spectral property.

> Marwa Masmoudi

Some preliminarie on measure theory

Ergodic endomorphism

Periodic endomorphism

Kakutani-Rokhlin Lemma

Mixing endomorphisms Thank you for your attention !

< □ > < @ > < ≧ > < ≧ > ≧ · の Q (~ 18/18)